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A B S T R A C T   

Non-Small Cell Lung Cancer (NSCLC) accounts for about 85% of all lung cancers. Developing non-invasive 
techniques for NSCLC histology characterization may not only help clinicians to make targeted therapeutic 
treatments but also prevent subjects from undergoing lung biopsy, which is challenging and could lead to clinical 
implications. The motivation behind the study presented here is to develop an advanced on-cloud decision- 
support system, named LUCY, for non-small cell LUng Cancer histologY characterization directly from thorax 
Computed Tomography (CT) scans. This aim was pursued by selecting thorax CT scans of 182 LUng ADeno
carcinoma (LUAD) and 186 LUng Squamous Cell carcinoma (LUSC) subjects from four openly accessible data 
collections (NSCLC-Radiomics, NSCLC-Radiogenomics, NSCLC-Radiomics-Genomics and TCGA-LUAD), in addi
tion to the implementation and comparison of two end-to-end neural networks (the core layer of whom is a 
convolutional long short-term memory layer), the performance evaluation on test dataset (NSCLC-Radiomics- 
Genomics) from a subject-level perspective in relation to NSCLC histological subtype location and grade, and the 
dynamic visual interpretation of the achieved results by producing and analyzing one heatmap video for each 
scan. LUCY reached test Area Under the receiver operating characteristic Curve (AUC) values above 77% in all 
NSCLC histological subtype location and grade groups, and a best AUC value of 97% on the entire dataset 
reserved for testing, proving high generalizability to heterogeneous data and robustness. Thus, LUCY is a 
clinically-useful decision-support system able to timely, non-invasively and reliably provide visually- 
understandable predictions on LUAD and LUSC subjects in relation to clinically-relevant information.   

1. Introduction 

Lung cancer is one of the cancers with the highest incidence and 
mortality rate (Tomassini et al., 2022a), accounting over 1.8 million 
new cases in the world and 1.4 million deaths every year (Prabhu et al., 
2022). According to the differentiation based on lung cancer cell size 
from an histological point of view, about 85% of all lung cancers is 
Non-Small Cell Lung Cancer (NSCLC) (Naik and Edla, 2021; Marentakis 
et al., 2021). NSCLC is a malignant lung mass generally located in the 
mediastinum (Rivera et al., 2013). It can be categorized into three his
tological subtypes: LUng ADenocarcinoma (LUAD), LUng Squamous Cell 
carcinoma (LUSC) and LUng Large Cell carcinoma (LULC) (Naik and 
Edla, 2021; Guo et al., 2020; Suster and Mino-Kenudson, 2020). LULC is 
diagnosed by exclusion. It represents a rare form (less than 10% of 

NSCLC histological subtypes) and its diagnosis is restricted to 
surgically-resected lung cancers with dubious immunohistochemical or 
morphological differentiation (Travis et al., 2015). Hence, LUAD and 
LUSC account for about 90% of NSCLC histological subtypes (Kriegs
mann et al., 2020; Han et al., 2021; Liu et al., 2021). LUAD originates in 
the submucosal glands and is generally located along the outer edges of 
the lungs, not rarely presenting a star-like contour (Tomassini et al., 
2022a; Marentakis et al., 2021). In the majority of cases, it appears like a 
malignant lung mass smaller than 3 cm (Panunzio and Sartori, 2020). 
LUSC originates in the squamous cells and is generally located in the 
middle of the lungs, often presenting a central necrosis and a wall 
thickness larger than 1.5 cm (Tomassini et al., 2022a; Marentakis et al., 
2021). In the majority of cases, it appears like a malignant lung mass 
bigger than 4 cm (Panunzio and Sartori, 2020). 
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Lung cancer diagnosis at an early stage is extremely important to 
increase the subjects’ survival rate by improving therapeutic treatments 
(Monkam et al., 2019; Halder et al., 2020). As diagnostic imaging 
techniques, clinicians recommend exams, such as Computed Tomogra
phy (CT), Positron Emission Tomography (PET) and Magnetic Reso
nance (MR) (Zhang et al., 2018). PET and MR show limitations in 
detecting lung masses. MR, in particular, is highly susceptible to miss 
smaller ones (Naik and Edla, 2021; Thakur et al., 2020). CT, especially 
low-dose CT, is the most sensitive to small, calcified lung masses 
(Tomassini et al., 2022a; Cao et al., 2020; Adiraju and Elias, 2021). CT 
has high spatial resolution, low noise and low distortion, and it is also 
rapid, non-invasive, widely available and quite affordable. CT allows to 
obtain a 3D visualization of the thorax, as each lung mass is detected and 
additional information about other lung structures can be assessed 
(Zhang et al., 2018; Pereira et al., 2021). Nevertheless, lung cancer is 
among the most frequently misdiagnosed diseases by CT scan visuali
zation only (Halder et al., 2022). Radiologists make substantial efforts to 
examine CT scans, search for lung masses and determine whether they 
are malignant based on their size, shape and texture, as interpretation is 
subjective (i.e., it depends on professional experience) (Shen et al., 
2019; Rubin, 2015). Under ideal circumstances, radiologists spend 
about 5 min per lung mass (Tomassini et al., 2022a; Rubin, 2015). With 
the presence of confounders, such as distraction, fatigue, inter-observer 
variability and intra-observer variability, radiologists could take wrong 
or even missing decisions, as they may overlook potentially-malignant 
lung masses (Winkels and Cohen, 2019; Zhao et al., 2013; Pinsky 
et al., 2013). 

Lung cancer histology characterization is fundamental (Naik and 
Edla, 2021; Marentakis et al., 2021), as the effectiveness of therapeutic 
treatments as well as the risk of complications are different for each lung 
cancer histological subtype (Bębas et al., 2021; Cong et al., 2020). 
NSCLC histological subtypes are characterized by peculiar alterations 
that allow to quite easily differentiate them at the molecular level 
(Fig. 1) (Suster and Mino-Kenudson, 2020). LUAD presents acinar, 
lepidic, cribriform, papillary, micropapillary and solid histopathological 
growth patterns, whereas LUSC presents abundant eosinophilic cyto
plasm, keratin pearl formation and clusters of polyhedral cells (Prabhu 
et al., 2022). Conversely, the unambiguous differentiation of NSCLC 

histological subtypes on the basis of morphological features only is still a 
challenge (Fig. 1) (Han et al., 2021; Liu et al., 2021). As a result, in 
subjects suspected of having lung cancer based on CT findings, it is 
recommended to undergo lung biopsy for accurately characterizing the 
histological subtype (Bębas et al., 2021; Planchard et al., 2018). By 
inspecting CT scans, potentially-malignant lung masses are detected. 
Subsequently, lung biopsy is performed and the microscopic structure of 
the excised tissue sample is analyzed (Han et al., 2021). Lung biopsy, 
mainly in the form of transthoracic fine needle biopsy, is the first choice 
for lung cancers located in peripheral lung structures (Planchard et al., 
2018). For lung cancers located in proximity to airways or blood vessels 
as well as for those located in deepest lung structures, performing lung 
biopsy is very challenging and may also lead to clinical implications 
(Han et al., 2021; Zhang et al., 2019). Thus, lung biopsy is strongly 
discouraged in subjects with complex clinical conditions (Guo et al., 
2020; Han et al., 2021). Moreover, excising a small tissue sample may 
not exactly characterize the potentially-malignant lung mass entirely 
because of its heterogeneous nature (Tomassini et al., 2022a; Marentakis 
et al., 2021). As a consequence, oncologists could fail in characterizing 
lung cancer histological subtypes (Moitra and Mandal, 2020). Therefore, 
developing non-invasive techniques for lung cancer histology charac
terization may not only help clinicians to make targeted therapeutic 
treatments in time but also prevent subjects from undergoing lung bi
opsy (Guo et al., 2020; Han et al., 2021). 

To the authors’ best knowledge, Cloud-YLung, the framework pub
lished by Tomassini et al (Tomassini et al., 2022b), is the first leveraging 
on a Convolutional Long Short-Term Memory (ConvLSTM)-based neural 
network for NSCLC histology characterization prior to lung biopsy. 
However, in Cloud-YLung as well as in all the other state-of-the-art 
frameworks (Section 2), a challenging evaluation protocol to prove 
the generalization capability to heterogeneous data coming from 
different sites was not used, neither clinically-relevant information was 
included in the analysis nor visually-understandable outcomes were 
dynamically generated. Thus, the motivation behind the study presented 
here is to propose a fully automatic procedure dedicated to efficient 
learning of lung mass-related features while overcoming the main lim
itations raised in (Tomassini et al., 2022b) by developing an advanced 
on-cloud decision-support system, named LUCY, for non-small cell LUng 
Cancer histologY characterization directly from thorax CT scans. The 
main scope is to make available a clinically-useful decision-support 
system able to non-invasively and reliably provide 
visually-understandable predictions on LUAD and LUSC subjects in 
relation to clinically-relevant information (i.e., NSCLC histological 
subtype location and grade), and with the potential to be not only 
extended to other pulmonary pathologies by keeping the anatomy of the 
lungs unaltered but also integrated in any other system for real diag
nostic purposes thanks to its machine-independent nature and 
visually-understandable outcomes. Furthermore, the main source code 
of LUCY is available, under copyright, on a GitHub repository1 to pro
mote transparency and reproducibility in the scientific community. 

2. Literature review 

In the literature, the approaches developed for characterizing NSCLC 
histological subtypes are mostly focused on the processing of micro
scopic images (Li et al., 2021). Nevertheless, NSCLC histological subtype 
characterization directly from radiological data may have significant 
implications for diagnostic decisions and therapeutic treatments 
(Chaunzwa et al., 2021). For instance, Shen et al (Shen et al., 2017), Zhu 
et al (Zhu et al., 2018), Liu et al (Liu et al., 2019) and Yang et al (Yang 
et al., 2020) explored the potential of radiomics-based Machine 
Learning (ML) algorithms in NSCLC histological subtype characteriza
tion directly from CT data. However, radiomics-based ML algorithms 

Fig. 1. LUAD (left) and LUSC (right) from a microscopic (above) and CT 
(below) image. 1 https://github.com/S3l11/LUCY 
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rely upon predefined radiomics features. Radiomics feature analysis and 
comparison is strongly influenced by variability. By adopting different 
radiomics features, clinicians may find difficult to select the appropriate 
feature set. Thus, the application of such algorithms may be not 
straightforward in the real clinical practice (Liu et al., 2021). The major 
drawback of radiomics, indeed, is the lack of standardization and 
reproducibility in the feature extraction process (Thawani et al., 2018). 
In particular, CT-derived radiomics features and their applicability 
heavily depend on the gray level number and voxel size (Reiazi et al., 
2021). Hence, a more automatic feature extraction procedure may 
positively impact the learning process. 

Among the plethora of Deep Learning (DL) algorithms, the exploi
tation of Convolutional Neural Networks (CNNs) in the characterization 
of NSCLC histological subtypes directly from CT data is increasing 
(Tomassini et al., 2022a). Generally, CNNs take single slices in input, as 
done by Chaunzwa et al (Chaunzwa et al., 2021). One of the main 
limitations of these approaches (i.e., slice-based approaches) is that 
NSCLC histological subtypes are analyzed by looking at the bidimen
sional space only. However, slices of the same CT scan form a spatial 
sequence and each NSCLC histological subtype has a certain depth that 
cannot be captured by analyzing each slice independently (Tomassini 
et al., 2022b). Therefore, it is necessary to integrate the volumetric in
formation by designing and developing a framework that includes a 
neural network able to digest a sequence of slices as a whole (Tomassini 
et al., 2022a, 2022b). These latter approaches (i.e., scan-based ap
proaches) have the potential to analyze the volumetric information in 
more detail (Tomassini et al., 2022a). Scan-based approaches compre
hend 3D CNNs but also less computationally-expensive algorithms, such 
as special recurrent neural networks (like ConvLSTMs) used indepen
dently and time-distributed 2D CNNs coupled with recurrent layers. 
Recurrent modules, in fact, are able to exploit their internal state to 
process sequences of slices and connect the previous information to the 
present one (Marentakis et al., 2021). 

Until now, still few studies aimed to non-invasively characterize 
NSCLC histological subtypes. The majority of them targeted private data 
collections, as the one of Guo et al (Guo et al., 2020) where a 3D CNN 
was developed and trained from scratch, and unprocessed thorax CT 
scans (554 LUAD and 175 LUSC) were analyzed. Only three studies 
targeted openly-accessible data collections. Marentakis et al (Marentakis 
et al., 2021) investigated the potential of four automatic procedures to 
characterize NSCLC histological subtypes directly from thorax CT scans. 
They processed 48 LUAD and 54 LUSC scans belonging to NSCLC-Ra
diomics2, and developed (1) two radiomics-based ML algorithms, (2) 
four pretrained 2D CNNs with fine tuning, (3) one pretrained 
time-distributed 2D CNN combined with a Long Short-Term Memory 
(LSTM)-based neural network and (4) two joint models. Algorithms (1) 
and (2) ignored the volumetric information, whereas algorithms (3) and 
(4) considered it. The one that reached the highest performance was 
algorithm (3), with a test ACCuracy (ACC) of 74% and Area Under the 
Curve (AUC) of the Receiver Operating Characteristic (ROC) of 78%. A 
notable finding of their study was that adding radiomics to the 
best-performing algorithm did not show any further performance 
improvement. Tomassini et al (Tomassini et al., 2022b) considered the 
same openly-accessible data collection to fulfill the same task. Specif
ically, they processed 50 LUAD and 50 LUSC scans from NSCLC-Radio
mics2, and accomplished both automatic feature extraction and 
classification by means of a ConvLSTM-based neural network trained 
from scratch on a scalable GPU cloud service. Their framework, 
Cloud-YLung precisely, achieved a test ACC of 75% and AUC of 84%, 
outperforming the best-performing algorithm proposed by Marentakis et 
al (Marentakis et al., 2021). A different openly-accessible data collection 
was taken into account by Moitra et al (Moitra and Mandal, 2020), 
which built a framework that combined a pretrained time-distributed 2D 

CNN and a bidirectional LSTM (biLSTM)-based neural network to 
non-invasively characterize NSCLC histological subtypes as LUAD, LUSC 
or not otherwise specified. To accomplish this task, they processed 
PET/CT scans of 211 subjects from NSCLC-Radiogenomics3. In its best 
guise, their framework gained a test ACC of 96% and AUC of 99%. 

3. LUCY 

With the objective to develop an advanced on-cloud decision-support 
system for NSCLC histology characterization directly from thorax CT 
scans, LUCY was implemented. Fig. 2 depicts the workflow of LUCY, 
whereas data and methodological details are reported in the following 
Subsections. 

3.1. Data 

A total of 368 unprocessed thorax CT scans (182 LUAD and 186 LUSC 
subjects) belonging to different openly-accessible data collections of The 
Cancer Imaging Archive (TCIA)4 were taken into account, along with 
biopsy-confirmed labels (Table 1) (Clark et al., 2013). Specifically, 
thorax CT scans were selected from four openly-accessible data collec
tions: NSCLC-Radiomics2, NSCLC-Radiogenomics3, NSCLC-Radio
mics-Genomics5 and TCGA-LUAD6. The data selection procedure was 
conducted under the following criteria: inclusion of CT as imaging 
modality, thorax as anatomical site, a number of slices per scan higher 
than 40 and lower than 360, and 512 pixels × 512 pixels as original slice 
resolution; exclusion of phantoms and 3rd-party results. In case of mul
tiple scans per subject, only the first meeting the afore-mentioned 
criteria was selected to avoid an intra-subject bias. 

3.1.1. Data from NSCLC-Radiomics 
A total of 200 unprocessed thorax CT scans (50 LUAD and 150 LUSC 

subjects) were selected from NSCLC- Radiomics2. Each scan was made 
up of a variable number of slices ranging from 87 to 297 with a reso
lution of 512 pixels × 512 pixels. All selected scans belonged to ano
nymized subjects ranging from 45 to 88 years in age at histological 
diagnosis. Among them, 18 LUAD and 40 LUSC scans belonged to 
women, whereas 32 LUAD and 110 LUSC scans belonged to men. All 
thorax CT scans were acquired with Siemens and CMS scanners. Once 
selected, they were stored as Digital Imaging and Communications in 
Medicine (DICOM) files. 

3.1.2. Data from NSCLC-Radiogenomics 
A total of 22 unprocessed thorax CT scans (all LUAD subjects) were 

selected from NSCLC-Radiogenomics3. Each scan was made up of a 
variable number of slices ranging from 56 to 348 with a resolution of 
512 pixels × 512 pixels. All selected scans belonged to anonymized 
subjects ranging from 24 to 80 years in age at histological diagnosis. 
Among them, 15 LUAD scans belonged to women, whereas 7 LUAD 
scans belonged to men. All thorax CT scans were acquired with Siemens 
scanners. Once selected, they were stored as DICOM files. 

3.1.3. Data from NSCLC-Radiomics-Genomics 
A total of 78 unprocessed thorax CT scans (42 LUAD and 36 LUSC 

subjects) were selected from NSCLC-Radiomics-Genomics5. Each scan 
was made up of a variable number of slices ranging from 50 to 356 with 
a resolution of 512 pixels × 512 pixels. All selected scans belonged to 
anonymized subjects with no information about age at histological 

2 https://wiki.cancerimagingarchive.net/display/Public/NSCLC-Radiomics 

3 https://wiki.cancerimagingarchive.net/display/Public/ 
NSCLC+Radiogenomics  

4 https://www.cancerimagingarchive.net/  
5 https://wiki.cancerimagingarchive.net/display/Public/NSCLC-Radiomics- 

Genomics  
6 https://wiki.cancerimagingarchive.net/display/Public/TCGA-LUAD 
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diagnosis. Among them, 19 LUAD and 7 LUSC scans belonged to women, 
whereas 23 LUAD and 29 LUSC scans belonged to men. All thorax CT 
scans were acquired with Siemens, GE Medical Systems and Philips 
scanners. Once selected, they were stored as DICOM files. 

3.1.4. Data from TCGA-LUAD 
A total of 68 unprocessed thorax CT scans (all LUAD subjects) were 

selected from TCGA-LUAD6. Each scan was made up of a variable 
number of slices ranging from 48 to 71 with a resolution of 512 pixels 
× 512 pixels. All selected scans belonged to anonymized subjects with 
no information about either age at histological diagnosis or sex. All 
thorax CT scans were acquired with Siemens scanners. Once selected, 
they were stored as DICOM files. 

3.2. Data preprocessing 

Since the lungs fill a small fraction of a thorax CT scan, all selected 
scans were preprocessed with the purpose of removing all disrupting 
information. First, Hounsfield Unit (HU) scale conversion was accom
plished to describe voxel values, considering the intensity window 
ranging from − 1024 HU to 400 HU. Next, 1-mm resampling was per
formed to make slices within scans spatially homogeneous. Such spatial 
homogeneity was described by the x, y and z parameters, and produced a 
remarkable effect not within each slice but between slices. The x and y 
parameters, which refers to intra-slice physical arrangement, had a 
smaller variance than the z parameter, which refers to inter-slice dis
tance. As a result, when the z parameter was bigger than 1, some arti
ficial slices were generated by interpolation; when the z parameter was 
smaller than 1, some slices were discarded. After 1-mm resampling, 
intensity normalization was done to smooth out the intensity variation 
caused by the use of different scanners or scanning parameters during 
the acquisition, such that the pixel values ranged from 0 to 1. At that 
point, automatic lung parenchyma segmentation was fulfilled for 
removing all non-lung tissues by exploiting UNet(R231), a pretrained 
UNet-like neural network developed and publicly released by Hofman
ninger et al (Hofmanninger et al., 2020). Then, each scan was auto
matically cropped by eliminating all non-informative voxels. Likewise, 
non-informative slices were automatically cut from each scan. After 

automatically cropping non-informative voxels and cutting 
non-informative slices, scan shapes resulted to be all different. Hence, all 
scans were resized to 250 pixels × 190 pixels × 270 pixels, which was 
the weighted average shape of the cropped-and-cut scans. For what 
concerns the z axis, when the number of slices per scan was bigger than 
250, the lung volume was centered by discarding initial and final slices 
in equal number; when the number of slices per scan was smaller than 
250, zero padding was performed. Eventually, eighteen preprocessed 
LUAD and LUSC scans were manually discarded, as most of their slices 
were dark and, therefore, not informative. Thus, a total of 350 pre
processed thorax CT scans (172 LUAD and 178 LUSC subjects), whose 
details are summarized in Table 2, were kept for subsequent automatic 
feature extraction and classification. Fig. 3 shows how a thorax CT scan 
appears after the afore-mentioned preprocessing steps. 

3.3. Data division and augmentation 

The choice on how to divide data for training, validation and testing 
was made according to both cardinality of the samples for each class and 
presence of clinically-relevant information (i.e., NSCLC histological 
subtype location and grade) in the corresponding Comma-Separated 
Values (CSV) file. Accordingly, 100% of preprocessed thorax CT scans 
belonging to NSCLC-Radiomics2, NSCLC-Radiogenomics3 and TCGA- 
LUAD6 was used as training dataset, 20% of which served as validation 
dataset. As test dataset, 100% of preprocessed thorax CT scans belonging 
to NSCLC-Radiomics-Genomics5 was used, in order to make the evalu
ation protocol challenging by computing the performance of LUCY on 
scans belonging to a different data collection from the ones used in both 
training and validation phases. 

To face the scarcity of training data and also mitigate the overfitting 
effect (Shorten and Khoshgoftaar, 2019), the training dataset, already 
balanced in terms of class prevalence (i.e., both classes shared exactly 
the same number of samples), was augmented through 15◦ left/right 
rotation and random in/out zoom ranging from 0.8 to 1.2. Rotation and 
zooming were chosen as augmentation techniques because they do not 
alter the real appearance of the lungs, which for instance horizontal 
flipping and vertical flipping do. 

Fig. 2. The workflow of LUCY.  

Table 1 
Summary of unprocessed data details.  

Data collection LUAD + LUSC 
(#) 

Age at diagnosis 
(avg y.o.) 

Women + men 
(#) 

Slices per scan 
(avg #) 

Slice resolution 
(x × y) 

NSCLC-Radiomics 50 + 150 67 58 + 142  192 512 × 512 
NSCLC-Radiogenomics 22 + 0 52 15 + 7  202 512 × 512 
NSCLC-Radiomics-Genomics 42 + 36 n. s. 26 + 52  203 512 × 512 
TCGA-LUAD 68 + 0 n. s. n. s.  60 512 × 512 
Total 182 + 186 n. a. n. a.  164 512 × 512 

n. s.: not specified, if data details are not specified by data providers 
n. a.: not applicable, if it cannot be computed due to missing fields 
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3.4. Neural architecture and hyperparameter tuning 

Two end-to-end neural networks, a ConvLSTM-based Neural 
Network (CLSTM-NN) and a Time-Distributed 2D CNN combined with a 
ConvLSTM-based Neural Network (TDCNN-CLSTM-NN), were designed 
and compared. CLSTM-NN was implemented because it demonstrated to 
outperform other scan-based approaches in NSCLC histology charac
terization (Tomassini et al., 2022b). TDCNN-CLSTM-NN was chosen as 
term of comparison because time-distributed 2D CNNs combined with 
recurrent layers demonstrated to be effective in non-invasively charac
terizing NSCLC histological subtypes, as addressed in Section 2, but no 
one has ever used a ConvLSTM layer as recurrent layer before. 

The final neural architecture of both end-to-end neural networks was 
customized after a set of preliminary experiments, where the computa
tional cost was kept low and the choice of the optimal hyperparameter 
configuration was driven by the Bayesian optimization algorithm, as 
recognized useful to maximize the neural network performance (Snoek 
et al., 2012; Wu et al., 2019). The Bayesian optimization algorithm was 
used for both training hyperparameters (i.e., number of epochs, learning 
rate and batch size) and neural network hyperparameters (i.e., number 
of filters and dropout rate). Specifically, all the possible combinations 
between the following values, chosen as they proved to ensure both 
computational lightness and good speed of training in a preliminary 
experimental evaluation, were investigated:  

▪ Training hyperparameters:  

1. Number of epochs: [40, 50, 60];  
2. Learning rate: [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05];  

3. Batch size: [1].  

▪ Neural network hyperparameters:  

1. Number of filters: [8, 16, 32, 64, 128, 256, 512];  
2. Dropout rate: [0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8]. 

The hyperparameter combination that led to the highest validation 
ACC was selected. 

ConvLSTM was chosen as core layer of both end-to-neural networks 
for taking into account both spatial temporal NSCLC features. 
ConvLSTM is a special kind of recurrent neural network that exploits 
convolution filters both input-to-state and state-to-state transitions 
(Fig. 4). Doing so, it is able to model the long-term interactions while 
exploring the volumetric information (Tomassini et al., 2022b). As for 
the "Conv" part, characterizing features are automatically extracted 
through convolution mechanisms different from the ones exploited by 
standard CNNs. During each convolution operation, the neural network 
learns which filters have to be activated when seeing a particular feature 
at a specific spatial position in the input (Tomassini et al., 2022b). As for 
the "LSTM" part, the main function of LSTM is to ensure the preservation 
of the back-propagation error. In a LSTM hidden unit, each sequence is 
analyzed in its entirety and the acquired information is stored in a gated 
memory cell. The gated memory cell decides about what to store and 
when to allow the reading and updating of the information through its 
input, forget and output gates (Tomassini et al., 2022b). As pointed out 
by Shi et al (Shi et al., 2015) and Tomassini et al (Tomassini et al., 
2022c), the output ht at time point t is regulated by (1), where * and ⊙
denote the convolution operator and the Hadamard product, it, ft, ot and 

Table 2 
Summary of preprocessed data details.  

Data collection LUAD + LUSC 
(#) 

Age at diagnosis 
(avg y.o.) 

Women + men 
(#) 

Slices per scan 
(avg #) 

Slice resolution 
(x × y) 

NSCLC-Radiomics 50 + 150 67 58 + 142  251 274 × 199 
NSCLC-Radiogenomics 22 + 0 52 15 + 7  268 272 × 188 
NSCLC-Radiomics-Genomics 32 + 28 n. s. 20 + 40  195 265 × 186 
TCGA-LUAD 68 + 0 n. s. n. s.  274 278 × 191 
Total 172 + 178 n. a. n. a.  250 270 × 190 

n. s.: not specified, if data details are not specified by data providers 
n. a.: not applicable, if it cannot be computed due to missing fields 

Fig. 3. Appearance of a bunch of slices (20 out of 250 total slices) of a preprocessed thorax CT scan. Slice progression goes from left to right.  
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ct are the activation vectors of the three gates and of the gated memory 
cell at time point t, xt is the current input, σ is the sigmoid activation 
function, tanh is the hyperbolic tangent activation function, W are the 
weight matrices, b is the bias of the gated memory cell and of its gates. 

it = σ(Wxi ∗ xt + Whi ∗ ht− 1 + Wci ⊙ ct− 1 + bi),

ft = σ(Wxf ∗ xt + Whf ∗ ht− 1 + Wcf ⊙ ct− 1 + bf),

ct = ft ⊙ ct− 1 + it ⊙ tanh(Wxc ∗ xt + Whc ∗ ht− 1 + bc),

ot = σ(Wxo ∗ xt + Who ∗ ht− 1 + Wco ⊙ ct + bo),

ht = ot ⊙ tanh(ct).

(1)  

3.4.1. ConvLSTM-based neural network 
CLSTM-NN includes a sequential six-layered ConvLSTM-based neu

ral network, whose neural architecture is reported in Table 3. The first 
layer is a ConvLSTM layer with 8 convolution filters and 3 × 3 kernels to 
take into account both spatial and temporal NSCLC features. The second 
layer is a Dropout layer (dropout rate of 70%) to mitigate the overfitting 
effect. The third layer is a Flatten layer to flatten all the automatically- 
extracted features into a 1D tensor. The fourth layer is a Dense layer with 
128 neurons and Rectified Linear Unit (ReLU) activation function to 
help the neural network take into account non-linear interactions. The 
fifth layer is a Dropout layer (dropout rate of 30%). The last layer is a 
Dense layer with 2 neurons and SoftMax activation function to assign 
probabilities to each class by producing real values between 0 and 1, 
with sum equal to 1. 

3.4.2. Time-distributed 2D CNN combined with ConvLSTM-based neural 
network 

TDCNN-CLSTM-NN includes a sequential twelve-layered 2D CNN 
followed by a sequential six-layered ConvLSTM-based neural network, 
whose neural architecture is reported in Table 4. The first layer is a Conv 
layer with 32 convolution filters, 3 × 3 kernels and ReLU activation 
function to take into account spatial NSCLC features only. The second 
layer is a Max Pooling layer (2 × 2 pool and 2 × 2 strides) to down
sample the input along its spatial dimensions. The third layer is a Conv 
layer with 64 convolution filters, 3 × 3 kernels and ReLU activation 
function. The fourth layer is another Max Pooling layer (2 × 2 pool and 
2 × 2 strides). The fifth layer is a Conv layer with 128 convolution fil
ters, 3 × 3 kernels and ReLU activation function. The sixth layer is 

another Max Pooling layer (2 × 2 pool and 2 × 2 strides). The seventh, 
eighth and ninth layers are Conv layers with 256 convolution filters, 
3 × 3 kernels and ReLU activation functions. The tenth layer is a Batch 
Normalization layer (momentum of 0.99 and epsilon of 0.001) to 
maintain the mean output close to 0 and its standard deviation close to 
1. The eleventh layer is an Activation layer with ReLU activation func
tion. The twelfth layer is another Max Pooling layer (2 × 2 pool and 2 ×

2 strides). The time-distributed layer allows to apply the described 2D 
CNN to every temporal slice of each thorax CT scan. The ConvLSTM- 
based neural network is made up by a ConvLSTM layer with 64 
convolution filters and 3 × 3 kernels, a Dropout layer (dropout rate of 
60%), a Flatten layer, a Dense layer with 128 neurons and ReLU acti
vation function, a Dropout layer (dropout rate of 50%) and a last Dense 
layer with 2 neurons and SoftMax activation function. 

3.5. Environmental setup and training strategy 

The Pro version of Google Colab cloud service was used as envi
ronmental setup, selecting high system RAM (34 GB) and GPU hardware 
acceleration (NVIDIA Tesla P100 with 16 GB of video RAM) settings. 

Fig. 4. The inner structure of ConvLSTM.  

Table 3 
CLSTM-NN neural architecture.  

Layer Specifications Output shape Parameters 

ConvLSTM 8 filters, 3 × 3 (None, 188, 268, 8)  2624 
Dropout 0.7 (None, 188, 268, 8)  0 
Flatten - (None, 403072)  0 
Dense 128 neurons, ReLU (None, 128)  51593344 
Dropout 0.3 (None, 128)  0 
Dense 2 neurons, SoftMax (None, 2)  258  

Table 4 
TDCNN-CLSTM-NN neural architecture.  

Layer Specifications Output shape Parameters 

Conv 32 filters, 3 × 3, 
ReLU 

(None, 190, 270, 32)  320 

Max Pooling 2 × 2 (None, 95, 135, 32)  0 
Conv 64 filters, 3 × 3, 

ReLU 
(None, 95, 135, 64)  18496 

Max Pooling 2 × 2 (None, 47, 67, 64)  0 
Conv 128 filters, 3 × 3, 

ReLU 
(None, 47, 67, 128)  73856 

Max Pooling 2 × 2 (None, 23, 33, 128)  0 
Conv 256 filters, 3 × 3, 

ReLU 
(None, 23, 33, 256)  295168 

Conv 256 filters, 3 × 3, 
ReLU 

(None, 23, 33, 256)  590080 

Conv 256 filters, 3 × 3, 
ReLU 

(None, 23, 33, 256)  590080 

Batch 
Normalization 

0.99, 0.001 (None, 23, 33, 256)  1024 

Activation ReLU (None, 23, 33, 256)  0 
Max Pooling 2 × 2 (None, 11, 16, 256)  0 
Time Distributed - (None, 250, 11, 16, 

256)  
1569024 

ConvLSTM 64 filters, 3 × 3 (None, 9, 14, 64)  737536 
Dropout 0.6 (None, 9, 14, 64)  0 
Flatten - (None, 8064)  0 
Dense 128 neurons, ReLU (None, 128)  1032320 
Dropout 0.5 (None, 128)  0 
Dense 2 neurons, SoftMax (None, 2)  258  
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The Keras library built on a TensorFlow backend (version 2.6.0) was also 
used. 

LUCY was trained from scratch up to a maximum of 50 epochs, using 
the early stopping callback with a patience of 5 epochs to stop the 
training at the point where the validation loss reached the minimum. 
The learning rate was fixed to 0.001 and the batch size to 1. Since, 
during training, the optimization based on a stochastic gradient is 
crucial to minimize the loss function while assuring higher efficiency 
(Tomassini et al., 2022b), the stochastic gradient descent was chosen as 
optimizer. The binary cross entropy was selected as loss function. During 
training, the weights that led to the lowest validation loss were saved, as 
the validation loss captures exactly the divergence between the pre
dicted output and the desired one. Eventually, they were used to eval
uate the performance of LUCY on test dataset. 

3.6. Performance evaluation 

To investigate both generalization capability and robustness of 
LUCY, its performance was evaluated from a subject-level perspective on 
100% of NSCLC-Radiomics-Genomics5, taken as test dataset, in relation 
to NSCLC histological subtype location and grade. According to the 
clinically-relevant information provided in NSCLC-Radiomics-Geno
mics5, subjects’ predictions were stratified into:  

▪ Five NSCLC histological subtype location groups, namely Left 
Lower Lobe (LLL), Left Upper Lobe (LUL), Right Lower Lobe 
(RLL), Right Middle Lobe (RML) and Right Upper Lobe (RUL);  

▪ Four NSCLC histological subtype grade groups, namely Grade 
Not Available (GNA), Grade 1 (G1), Grade 2 (G2) and Grade 3 
(G3). 

As classification metrics, the ACC (2), PREcision (PRE) (3), SENsi
tivity (SEN) (4), F1-score (5), ROC and respective AUC were taken into 
account, setting the discrimination threshold to 0.5 for computing the 
ACC, PRE, SEN and F1-score. LUAD was chosen as positive (1;0) class 
and LUSC as negative (0;1) class because of the higher incidence of the 
first NSCLC histological subtype (Tomassini et al., 2022a). 

ACC =
TP + TN

TP + TN + FP + FN
. (2)  

PRE =
TP

TP + FP
. (3)  

SEN =
TP

TP + FN
. (4)  

F1 − score =
TP

TP + 1
2(FP + FN)

. (5) 

In the equations:  

▪ TP stands for True Positive and it is the case where LUAD 
subjects are correctly classified as subjects affected by LUAD;  

▪ TN stands for True Negative and it is the case where LUSC 
subjects are correctly classified as subjects affected by LUSC; 

▪ FP stands for False Positive and it is the case where LUSC sub
jects are wrongly classified as subjects affected by LUAD;  

▪ FN stands for False Negative and it is the case where LUAD 
subjects are wrongly classified as subjects affected by LUSC. 

Among the afore-mentioned classification metrics, higher attention 
was paid to the AUC because it highlights the ability to discriminate 
between LUAD and LUSC classes without depending on any discrimi
nation threshold. For each NSCLC histological subtype location and 
grade group as well as for the entire test dataset, the AUC of CLSTM-NN 
was compared with the AUC of TDCNN-CLSTM-NN by means of the 

DeLong’s test (DeLong et al., 1988). Statistical level of significance (P) 
was set to 0.05. 

3.7. Dynamic visual interpretation 

To highlight the lung voxels that influenced the automatic decision- 
making process the most, Gradient-weighted Class Activation Mapping 
(Grad-CAM) (Selvaraju et al., 2017) was included in the learning process 
of LUCY (TDCNN-CLSTM-NN only). Grad-CAM was chosen as visuali
zation module because it exploits the gradient information flowing into 
the last convolutional layer to understand the importance of each 
neuron (Selvaraju et al., 2017). In this study, Grad-CAM was adapted to 
work with sequences of slices in place of independent images. In order to 
generate heatmaps, a sub-model was created to map the input image to 
the last convolutional layer activations. Next, another sub-model was 
created to map the last convolutional layer activations to the prediction 
layer (i.e., the last Dense layer). At that point, the gradient of the top 
predicted class for the input data with respect to the last convolutional 
layer activations was computed. Since each thorax CT scan was consti
tuted by 250 stacked slices, one heatmap frame was generated for each 
slice, normalized between 0 and 1, and colorized by using the jet color 
map. As a result, one heatmap video constituted by 250 stacked slices 
running at 30 fps was obtained for each thorax CT scans and super
imposed to it. This way, it was dynamically displayed where LUCY 
focused its attention most strongly in the non-invasive NSCLC histology 
characterization, as the voxel intensity, from blue (low) to red (high), 
corresponds to the measure of how much it was responsible for a certain 
prediction. 

To provide a better perspective of the dynamic visual interpretation 
outcomes, a novel analysis procedure was conducted for each NSCLC 
histological subtype location and grade group as well as for the overall 
test dataset. First, a threshold value was established to distinguish the 
red content from the non-red one in each heatmap video. To do so, a Hue 
Saturation Value (HSV) colormap was created for quick access to unique 
colors. By referring to the HSV colormap, the appropriate shade of red 
was determined and, thus, used to create a mask for the extraction of the 
red content. At that point, a binarization was performed to make all 
extracted red content appear as white and the rest as black, and the 
resultant binarized red mask videos were converted into arrays of voxel 
values (i.e., 0 for black, 255 for white). Eventually, each binarized red 
mask array was superimposed to the corresponding lung mask array, 
itself binary, and the match of white voxels was evaluated to determine 
the correctness of the dynamic visual interpretation outcomes. Fig. 5 
graphically synthesizes the afore-mentioned analysis procedure. 

4. Results 

Fig. 6 and Fig. 7 display the confusion matrices of LUCY (CLSTM-NN 
and TDCNN-CLSTM-NN, respectively) in classifying LUAD and LUSC test 
subjects in relation to NSCLC histological subtype location and grade.  
Table 5 and Table 6 report the ACC, PRE, SEN and F1-score values of 
LUCY (CLSTM-NN and TDCNN-CLSTM-NN, respectively) in classifying 
LUAD and LUSC test subjects in relation to NSCLC histological subtype 
location and grade. Table 7 reports the AUC values of LUCY (both 
CLSTM-NN and TDCNN-CLSTM-NN) in classifying LUAD and LUSC test 
subjects in relation to NSCLC histological subtype location and grade, 
together with the P value when statistically comparing the performance 
of the two end-to-end neural networks by means of the DeLong’s test. In 
Table 5, Table 6 and Table 7, classification metrics were not computed 
for the RML and G1 groups, because statistics cannot be performed in 
case of too few (less than 3) samples per class. 

Table 8 reports the results of the analysis procedure applied on the 
dynamic visual interpretation outcomes in relation to NSCLC histologi
cal subtype location and grade. Fig. 8 displays a bunch of heatmap 
frames of a correctly-classified test scan of a LUAD subject belonging to 
the LUL and GNA groups. Fig. 9 displays a bunch of heatmap frames of a 

S. Tomassini et al.                                                                                                                                                                                                                              



Computerized Medical Imaging and Graphics 110 (2023) 102310

8

misclassified test scan. In both Fig. 8 and Fig. 9, red spots correspond to 
the lung voxels where LUCY focused its attention the most in non- 
invasive NSCLC histology characterization. 

Above-reported findings are discussed in Section 5. 

5. Discussion 

This study aimed to develop LUCY in the cloud for NSCLC histology 
characterization directly from thorax CT scans. This aim was pursued by:  

▪ Processing heterogeneous thorax CT scans, selected from four 
openly-accessible data collections; 

▪ Using a challenging evaluation protocol to prove the general
ization capability to heterogeneous data coming from different 
sites by reserving three data collections (NSCLC-Radiomics, 
NSCLC-Radiogenomics and TCGA-LUAD) as training and vali
dation datasets, and one entire data collection (NSCLC-Radio
mics-Genomics) as test dataset;  

▪ Implementing and comparing two end-to-end neural networks, 
the core layer of whom is a ConvLSTM layer;  

▪ Computing the performance on the dataset reserved for testing 
from a subject-level perspective by providing a stratification 
according to NSCLC histological subtype location and grade; 

▪ Making the achieved outcomes visually interpretable by pro
ducing and analyzing one heatmap video for each thorax CT 
scan. 

Although using a challenging evaluation protocol to prove the 
generalization capability to heterogeneous data coming from different 
sites in such an highly-demanding task, LUCY demonstrated to be highly 
generalizable and robust. In fact, it reached test AUC values above 77% 
in all NSCLC histological subtype location and grade groups, and a best 
AUC value of 97% on the entire dataset reserved for testing. No statis
tical significance is observed between AUC values of CLSTM-NN and 
TDCNN-CLSTM-NN for each NSCLC histological subtype location and 
grade group as well as for the overall test dataset (Table 7). This means 
that both end-to-end neural networks, the core layer of whom is a 

Fig. 5. Analysis procedure applied on the dynamic visual interpretation outcomes.  

Fig. 6. Confusion matrices of LUCY (CLSTM-NN) for LLL (A), LUL (B), RLL (C), RML (D), RUL (E), GNA (F), G1 (G), G2 (H) and G3 (I) groups, and for overall test 
dataset (L), respectively. 
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ConvLSTM layer, are effective in non-invasively characterize NSCLC 
histological subtypes. Despite non-statistically different AUC values, the 
ACC, PRE, SEN and F1-score values show that there was no improve
ment by coupling the ConvLSTM-based neural network with the time- 
distributed 2D CNN (Table 5 and Table 6). Indeed, CLSTM-NN gained 
equal or even higher ACC values than the ones achieved by TDCNN- 
CLSTM-NN. Moreover, according to the PRE, SEN and F1-score values, 
TDCNN-CLSTM-NN underestimated one of the two classes in the ma
jority of NSCLC histological subtype location and grade groups, whereas 
CLSTM-NN did not. Thereby, a ConvLSTM-based neural network used 
independently is even better suited than a time-distributed 2D CNN in 
automatically-extracting the most salient features for non-invasively 
characterizing NSCLC histology, thanks to the convolution mecha
nisms that are different from the ones of CNNs. Nevertheless, CLSTM-NN 

did not allow the inclusion of visualization modules (e.g., Grad-CAM) as 
they work for CNNs only. Conversely, TDCNN-CLSTM-NN allowed it, 
making possible to visually interpret the cases where LUCY succeeds or 
not in classifying LUAD and LUSC test subjects. In Fig. 8, the generated 
heatmaps are well confined (i.e., there is a unique, circumscribed red 
spot on one lung) in the upper lobe of the left lung. This is the case where 
LUCY correctly characterize the NSCLC histological subtype, being able 
to focus the attention most strongly exclusively on the area where the 
lung mass is actually present, which is exactly the upper lobe of the left 
lung. In Fig. 9, instead, the generated heatmaps are less confined (i.e., 
there are multiple red spots on both lungs). This is the case where LUCY 
failed in non-invasively characterizing the NSCLC histological subtype. 
The reason of the misclassification is that LUCY was unable to focus the 
attention exclusively on a single area, the one where the lung mass is 

Fig. 7. Confusion matrices of LUCY (TDCNN-CLSTM-NN) for LLL (A), LUL (B), RLL (C), RML (D), RUL (E), GNA (F), G1 (G), G2 (H) and G3 (I) groups, and for overall 
test dataset (L), respectively. 

Table 5 
Performance of LUCY (CLSTM-NN) in classifying LUAD and LUSC on test dataset 
stratified according to NSCLC histological subtype location and grade. Number 
of LUAD and LUSC subjects, ACC, PRE, SEN and F1-score values are given in 
percentage (%).   

LUAD 
(%) 

LUSC 
(%) 

ACC 
(%) 

PRE (%) 
LUAD/ 
LUSC 

SEN (%) 
LUAD/ 
LUSC 

F1-score 
(%) 
LUAD/ 
LUSC 

LLL  8  12 100 100/100 100/100 100/100 
LUL  13  15 88 88/89 88/89 88/89 
RLL  12  5 90 100/75 86/100 92/86 
RML  2  2 n. a. n. a. n. a. n. a. 
RUL  18  13 95 100/89 91/100 95/94 
GNA  28  7 86 100/57 82/100 90/73 
G1  3  5 n. a. n. a. n. a. n. a. 
G2  12  15 94 88/100 100/89 93/94 
G3  10  20 94 100/92 83/100 91/96 
Overall  53  47 92 97/87 88/96 92/92 

n. a.: not applicable, if there is not statistics due to too few samples per class 

Table 6 
Performance of LUCY (TDCNN-CLSTM-NN) in classifying LUAD and LUSC on 
test dataset stratified according to NSCLC histological subtype location and 
grade. Number of LUAD and LUSC subjects, ACC, PRE, SEN and F1-score values 
are given in percentage (%).   

LUAD 
(%) 

LUSC 
(%) 

ACC 
(%) 

PRE (%) 
LUAD/ 
LUSC 

SEN (%) 
LUAD/ 
LUSC 

F1-score 
(%) 
LUAD/ 
LUSC 

LLL  8  12 75 67/83 80/71 73/77 
LUL  13  15 82 100/75 62/100 77/86 
RLL  12  5 90 100/75 86/100 92/86 
RML  2  2 n. a. n. a. n. a. n. a. 
RUL  18  13 79 100/67 64/100 78/80 
GNA  28  7 71 100/40 65/100 79/57 
G1  3  5 n. a. n. a. n. a. n. a. 
G2  12  15 94 100/90 86/100 92/95 
G3  10  20 78 67/83 67/83 67/83 
Overall  53  47 82 92/74 72/93 81/83 

n. a.: not applicable, if there is not statistics due to too few samples per class 
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present, thus automatically extracting and learning features not strictly 
related to the specific NSCLC histological subtype. To bolster the cred
ibility of LUCY, dynamic visual interpretation outcomes were also 
analyzed for each NSCLC histological subtype location and grade group 
as well as for the entire dataset reserved for testing (Table 8), thus, 
providing a more robust and comprehensive evaluation. In the heatmap 

videos of all NSCLC histological subtype location and grade groups, the 
red content that lies inside the lungs exceeds 74% and 83% for LUAD 
and LUSC test subjects, respectively, while it reaches 85% and 94% in 
the entire test dataset. From Table 8 it can be also noticed that, overall, 
LUCY succeeded in classifying the 72% of LUAD test subjects and the 
93% of LUSC test subjects, reaching 100% in case of RML location and 
G1 grade groups. 

In the literature, a common choice is to exploit 3D CNNs to process 
volumetric data, such as thorax CT scans. Although 3D CNNs have the 
ability to preserve inter-slice context information, they come with a high 
computational cost mainly due to the 3D convolution mechanism and 
the abundant number of parameters. Conversely, by using less 
computationally-expensive algorithms like the ones reviewed in Section 
2, it is possible to simultaneously process multiple slices of the same 
scan, preserving their spatial correlation in terms of anatomy, while 
ensuring good performance and improved execution times. In this study, 
a performance comparative analysis with the state-of-the-art studies was 
not provided because of the use of different data. By using different data, 
a comparative analysis restricted to the achieved performance would be 
non-objective. To establish the novelty and superiority of this study with 
respect to the state-of-the-art ones, a qualitative methodological 
comparative analysis was provided, instead. To simultaneously process 
multiple slices of the same scan, both Moitra et al (Moitra and Mandal, 
2020) and Marentakis et al (Marentakis et al., 2021) used transfer 
learning by exploiting pretrained 2D CNNs coupled with recurrent 
layers (LSTM and biLSTM, respectively). However, pretraining 2D CNNs 
on large natural data collections (e.g., ImageNet) may cause the learning 
process to be invariant to scale variations (Graziani et al., 2021). Such 
invariance can be detrimental in medical applications because scale 
carries valuable information. Moreover, the use of adapted neural net
works pretrained on natural images may not yield clinically satisfactory 
outcomes, as medical images are generally more difficult to handle due 
to unique challenges, such as high inter-class similarity (Chen et al., 
2022). Thus, training from scratch is preferable to introduce the desired 
invariances in the automatically-learned features (Graziani et al., 2021). 
Accordingly, LUCY was trained from scratch. Since approaches trained 
from scratch does not require an input tensor of a fixed shape, it was also 
possible to resize all scans to the ad-hoc shape, obtained by weighting 
the average shapes of the cropped-and-cut scans (Subsection 3.2). One of 
the most important caveats of the state-of-the-art frameworks is the 
single-site origin of CT data that limits the generalizability of findings. In 
light of this, one of the main novelties introduced in LUCY was to 
analyze heterogeneous data from different sites, thus acquired with 

Table 7 
Performance of LUCY (both CLSTM-NN and TDCNN-CLSTM-NN) in classifying 
LUAD and LUSC on test dataset stratified according to NSCLC histological sub
type location and grade. AUC values are given in percentage (%). P value is also 
reported.   

AUC (%) P  

CLSTM-NN TDCNN-CLSTM-NN  

LLL 100 77 0.1486 
LUL 93 100 0.4093 
RLL 91 100 0.3711 
RML n. a. n. a. n. a. 
RUL 100 100 1 
GNA 97 100 0.4093 
G1 n. a. n. a. n. a. 
G2 95 100 0.3657 
G3 97 92 0.5071 
Overall 97 95 0.7078 

n. a.: not applicable, if there is not statistics due to too few samples per class 

Table 8 
Results of the analysis procedure applied on the dynamic visual interpretation 
outcomes stratified according to NSCLC histological subtype location and grade. 
Number of LUAD and LUSC subjects, number of correctly-classified test scans 
and red content within the lungs are given in percentage (%).   

LUAD 
(%) 

LUSC 
(%) 

Correctly classified 
(%) 
LUAD/LUSC 

Red content within 
lungs (%) 
LUAD/LUSC 

LLL  8  12 80/71 88/83 
LUL  13  15 63/100 74/97 
RLL  12  5 86/100 90/98 
RML  2  2 100/100 97/98 
RUL  18  13 64/100 75/99 
GNA  28  7 65/100 75/96 
G1  3  5 100/100 97/97 
G2  12  15 86/100 90/100 
G3  10  20 67/83 78/88 
Overall  53  47 72/93 85/94  

Fig. 8. A bunch of heatmap frames (20 out of 250 total heatmap frames) of a correctly-classified test scan. Heatmap frame progression goes from left to right.  
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different acquisition protocols and by using scanners of different man
ufacturers, in order to reach both reliability and reproducibility of the 
results. In fact, LUCY is the only that uses three data collections as 
training and validation datasets, and the 100% of a fourth data collec
tion as test dataset. Doing so was more challenging but also fairer, as it 
allowed to effectively prove the generalization capability of LUCY. 
Additionally, entire lung volumes were processed in LUCY to preserve 
the anatomical integrity of the lungs, whereas lung patches were pro
cessed by both Moitra et al (Moitra and Mandal, 2020) and Marentakis et 
al (Marentakis et al., 2021). By processing patches, the possibility of 
conducting an analysis on a subject-level perspective is nullified. 
Conversely, LUCY evaluates the performance on test dataset from a 
subject-level perspective, consistently with what is done in the real 
clinical practice. Another important difference from the frameworks 
developed by Moitra et al (Moitra and Mandal, 2020) and Marentakis et 
al (Marentakis et al., 2021) is that LUCY was developed entirely in the 
cloud to ensure a machine-independent reproducibility of the 
decision-support system, guaranteeing also cost saving and sustain
ability. To allow so, publicly-available data collections, already 
compliant with ethical and regulatory issues, were used. The uploading 
of thorax CT scans in the DICOM format took just few seconds. Although 
the training of LUCY took approximately 20 h to be completed, only up 
to 25 s served to generate the predictions on test dataset, which is a 
perfectly acceptable time in terms of execution efficiency. Moreover, no 
special network bandwidth requirements were necessary for on-cloud 
training, validating and testing. In case LUCY would like to be tested 
on a private data collection, its weights could be exploited to produce 
predictions in a local environment/private workstation, with no need for 
anonymization. Computing in the cloud was chosen in this study 
because one of the main challenges facing medical image analysis is the 
development of benchmarks that allows algorithms to be compared 
under common measures and standards (Kagadis et al., 2013). The cloud 
can contribute to such benchmarks by facilitating their creation and 
usage. For what specifically concerns radiological data analysis, the use 
of computer-aided diagnostic systems has been suggested as a way of 
increasing the detection power. However, these systems have problems, 
such as high software license costs, rapid obsolescence and the need for 
powerful hardware, which do not make them cost-effective solutions. 
The scalable and distributed computational and resource pooling fea
tures of cloud computing, instead, have the potential to increase the 
execution speed while keeping the costs low (Erfannia and Alipour, 
2022). Indeed, the pivotal component of the cloud is the analysis plat
form, which supports a wide spectrum of data queries and 

cost-effectiveness computational resources, without the surcharge of 
purchasing and maintaining additional equipment (Kagadis et al., 2013; 
Erfannia and Alipour, 2022). Eventually, LUCY is the first and only to 
include clinically-relevant information in the analysis and provide a 
dynamic visual interpretation of the achieved results, paving the way to 
understandable scan-based clinical decision-support systems driven by 
DL. 

LUCY achieved encouraging results in non-invasive NSCLC histology 
characterization, but its performance could be further improved. The 
main limitation relies on the fact that this study performed binary 
classification only. NSCLC histological subtypes were classified as LUAD 
or LUSC, without considering LULC. However, the diagnosis of LULC is 
restricted to surgically-resected lung cancers with unclear immuno/ 
morphological differentiation (Travis et al., 2015). Moreover, since the 
considered data collections contain subjects diagnosed with LULC before 
the clinical implementation of the afore-mentioned guidelines, the 
annotation regarding LULC could be questionable. For these reasons, 
LULC was not taken into account in developing LUCY. Another limita
tion is that the choice of analyzing entire lung volumes made not 
possible to increase the batch size to a value greater than 1 due to the 
needed RAM, ending up in disabling the exploitation of the advantages 
that larger (without exceeding) batch sizes could carry, such as a faster 
convergence. However, hardware capabilities are now experiencing 
rapid empowerment also in cloud environments, so it will soon be 
possible to easily manage this limitation. In addition, it is true that using 
cloud computing to support clinical decisions in the healthcare sector is 
a significant opportunity for both researchers and practitioners (Ali 
et al., 2018), but cloud computing should be rigorously evaluated before 
its wide adoption. In fact, despite its numerous benefits, a notable issue 
of cloud computing is related to the challenges associated with the usage 
of on-cloud systems in the real clinical setting. The main challenge is 
linked to data security (Ali et al., 2018). There is a long line of research 
pertaining this challenge, and data encryption is currently the best 
strategy for protecting data storage and retrieval in the cloud (Mehrtak 
et al., 2021). However, this is still an area of active research (Ali et al., 
2018). The second most important challenge is linked to data integrity, 
confidentiality and authenticity. Access control and endpoint authenti
cation are valid strategies to handle this challenge (Mehrtak et al., 
2021). Another challenge is linked to data anonymity. Subjects’ iden
tities must be made anonymous when storing private health data in the 
cloud. Such anonymization is assessed by removing all elements that 
could be used to identify the subjects or the subjects’ relatives, above all 
the name, geographical information, phone number and biometrics 

Fig. 9. A bunch of heatmap frames (20 out of 250 total heatmap frames) of a misclassified test scan. Heatmap frame progression goes from left to right.  
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(Al-Issa et al., 2019). However, anonymization in healthcare data setting 
is still a very active area of research. Other challenges are strictly 
technical, such as the lack of necessary Internet connectivity infra
structure in healthcare institutions to support cloud computing-enabled 
healthcare projects or the possible interference of such systems with 
medical equipment (Ali et al., 2018). Identifying these challenges is the 
first step to tackle them, and future investigations need to provide more 
feasible solutions to fix such bugs. 

As part of future work, LUCY may be refined by coupling thorax CT 
scans with scans of different imaging modalities (e.g., PET), as done by 
Moitra et al (Moitra and Mandal, 2020). Although the multi-modality 
approach is likely to perform better than the single imaging modality 
approach, using a multi-modality approach is more expensive and 
time-consuming in the real clinical practice for both subjects and 
healthcare centers. Despite challenging, a way to extend the analysis to a 
multi-modality classification will be found. Using parallel neural net
works with independent or shared weights for each imaging modality 
and fusing them at one of the middle layers may be an idea in this re
gard. Furthermore, it could be interesting to look for novel strategies to 
make the encouraging results produced by a special recurrent neural 
network (like ConvLSTM) visually understandable, as done for CNN-like 
models. LUCY may be refined further by extending its application to the 
non-invasive classification of additional pulmonary pathologies, as it 
keeps the anatomy of the lungs unaltered. Experiments may also be 
carried out by including other meta-learners. Such evaluative studies 
will develop the usage of prognostic medical image biomarkers with 
NSCLC histological subtypes. 

6. Conclusions 

LUCY is an advanced on-cloud decision-support system that effec
tively characterizes NSCLC histology directly from thorax CT scans. It is 
the first that makes use of two end-to-end neural networks, the core 
layer of whom is a ConvLSTM layer, able to non-invasively and reliably 
provide visually-understandable predictions on LUAD and LUSC sub
jects in relation to clinically-relevant information. Another important 
characteristic that has to be emphasized is that LUCY is lung mass seg
mentation free. Therefore, its performance is not affected by the vari
ability of lung mass margins. Furthermore, it could easily be integrated 
in any other system for real diagnostic purposes thanks to its machine- 
independent nature, execution efficiency and visually-understandable 
outcomes. 
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