66 research outputs found

    An Application-Specific VLIW Processor with Vector Instruction Set for CNN Acceleration

    Full text link
    In recent years, neural networks have surpassed classical algorithms in areas such as object recognition, e.g. in the well-known ImageNet challenge. As a result, great effort is being put into developing fast and efficient accelerators, especially for Convolutional Neural Networks (CNNs). In this work we present ConvAix, a fully C-programmable processor, which -- contrary to many existing architectures -- does not rely on a hard-wired array of multiply-and-accumulate (MAC) units. Instead it maps computations onto independent vector lanes making use of a carefully designed vector instruction set. The presented processor is targeted towards latency-sensitive applications and is capable of executing up to 192 MAC operations per cycle. ConvAix operates at a target clock frequency of 400 MHz in 28nm CMOS, thereby offering state-of-the-art performance with proper flexibility within its target domain. Simulation results for several 2D convolutional layers from well known CNNs (AlexNet, VGG-16) show an average ALU utilization of 72.5% using vector instructions with 16 bit fixed-point arithmetic. Compared to other well-known designs which are less flexible, ConvAix offers competitive energy efficiency of up to 497 GOP/s/W while even surpassing them in terms of area efficiency and processing speed.Comment: Accepted for publication in the proceedings of the 2019 IEEE International Symposium on Circuits and Systems (ISCAS

    Domain-Specific Computing Architectures and Paradigms

    Full text link
    We live in an exciting era where artificial intelligence (AI) is fundamentally shifting the dynamics of industries and businesses around the world. AI algorithms such as deep learning (DL) have drastically advanced the state-of-the-art cognition and learning capabilities. However, the power of modern AI algorithms can only be enabled if the underlying domain-specific computing hardware can deliver orders of magnitude more performance and energy efficiency. This work focuses on this goal and explores three parts of the domain-specific computing acceleration problem; encapsulating specialized hardware and software architectures and paradigms that support the ever-growing processing demand of modern AI applications from the edge to the cloud. This first part of this work investigates the optimizations of a sparse spatio-temporal (ST) cognitive system-on-a-chip (SoC). This design extracts ST features from videos and leverages sparse inference and kernel compression to efficiently perform action classification and motion tracking. The second part of this work explores the significance of dataflows and reduction mechanisms for sparse deep neural network (DNN) acceleration. This design features a dynamic, look-ahead index matching unit in hardware to efficiently discover fine-grained parallelism, achieving high energy efficiency and low control complexity for a wide variety of DNN layers. Lastly, this work expands the scope to real-time machine learning (RTML) acceleration. A new high-level architecture modeling framework is proposed. Specifically, this framework consists of a set of high-performance RTML-specific architecture design templates, and a Python-based high-level modeling and compiler tool chain for efficient cross-stack architecture design and exploration.PHDElectrical and Computer EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/162870/1/lchingen_1.pd

    KAVUAKA: a low-power application-specific processor architecture for digital hearing aids

    Get PDF
    The power consumption of digital hearing aids is very restricted due to their small physical size and the available hardware resources for signal processing are limited. However, there is a demand for more processing performance to make future hearing aids more useful and smarter. Future hearing aids should be able to detect, localize, and recognize target speakers in complex acoustic environments to further improve the speech intelligibility of the individual hearing aid user. Computationally intensive algorithms are required for this task. To maintain acceptable battery life, the hearing aid processing architecture must be highly optimized for extremely low-power consumption and high processing performance.The integration of application-specific instruction-set processors (ASIPs) into hearing aids enables a wide range of architectural customizations to meet the stringent power consumption and performance requirements. In this thesis, the application-specific hearing aid processor KAVUAKA is presented, which is customized and optimized with state-of-the-art hearing aid algorithms such as speaker localization, noise reduction, beamforming algorithms, and speech recognition. Specialized and application-specific instructions are designed and added to the baseline instruction set architecture (ISA). Among the major contributions are a multiply-accumulate (MAC) unit for real- and complex-valued numbers, architectures for power reduction during register accesses, co-processors and a low-latency audio interface. With the proposed MAC architecture, the KAVUAKA processor requires 16 % less cycles for the computation of a 128-point fast Fourier transform (FFT) compared to related programmable digital signal processors. The power consumption during register file accesses is decreased by 6 %to 17 % with isolation and by-pass techniques. The hardware-induced audio latency is 34 %lower compared to related audio interfaces for frame size of 64 samples.The final hearing aid system-on-chip (SoC) with four KAVUAKA processor cores and ten co-processors is integrated as an application-specific integrated circuit (ASIC) using a 40 nm low-power technology. The die size is 3.6 mm2. Each of the processors and co-processors contains individual customizations and hardware features with a varying datapath width between 24-bit to 64-bit. The core area of the 64-bit processor configuration is 0.134 mm2. The processors are organized in two clusters that share memory, an audio interface, co-processors and serial interfaces. The average power consumption at a clock speed of 10 MHz is 2.4 mW for SoC and 0.6 mW for the 64-bit processor.Case studies with four reference hearing aid algorithms are used to present and evaluate the proposed hardware architectures and optimizations. The program code for each processor and co-processor is generated and optimized with evolutionary algorithms for operation merging,instruction scheduling and register allocation. The KAVUAKA processor architecture is com-pared to related processor architectures in terms of processing performance, average power consumption, and silicon area requirements

    RNN-Based Radio Resource Management on Multicore RISC-V Accelerator Architectures

    Get PDF
    Radio resource management (RRM) is critical in 5G mobile communications due to its ubiquity on every radio device and its low latency constraints. The rapidly evolving RRM algorithms with low latency requirements combined with the dense and massive 5G base station deployment ask for an on-the-edge RRM acceleration system with a tradeoff between flexibility, efficiency, and cost-making application-specific instruction-set processors (ASIPs) an optimal choice. In this work, we start from a baseline, simple RISC-V core and introduce instruction extensions coupled with software optimizations for maximizing the throughput of a selected set of recently proposed RRM algorithms based on models using multilayer perceptrons (MLPs) and recurrent neural networks (RNNs). Furthermore, we scale from a single-ASIP to a multi-ASIP acceleration system to further improve RRM throughput. For the single-ASIP system, we demonstrate an energy efficiency of 218 GMAC/s/W and a throughput of 566 MMAC/s corresponding to an improvement of 10x and 10.6x, respectively, over the single-core system with a baseline RV32IMC core. For the multi-ASIP system, we analyze the parallel speedup dependency on the input and output feature map (FM) size for fully connected and LSTM layers, achieving up to 10.2x speedup with 16 cores over a single extended RI5CY core for single LSTM layers and a speedup of 13.8x for a single fully connected layer. On the full RRM benchmark suite, we achieve an average overall speedup of 16.4x, 25.2x, 31.9x, and 38.8x on two, four, eight, and 16 cores, respectively, compared to our single-core RV32IMC baseline implementation
    • …
    corecore