4,850 research outputs found

    Transfer Learning for Speech and Language Processing

    Full text link
    Transfer learning is a vital technique that generalizes models trained for one setting or task to other settings or tasks. For example in speech recognition, an acoustic model trained for one language can be used to recognize speech in another language, with little or no re-training data. Transfer learning is closely related to multi-task learning (cross-lingual vs. multilingual), and is traditionally studied in the name of `model adaptation'. Recent advance in deep learning shows that transfer learning becomes much easier and more effective with high-level abstract features learned by deep models, and the `transfer' can be conducted not only between data distributions and data types, but also between model structures (e.g., shallow nets and deep nets) or even model types (e.g., Bayesian models and neural models). This review paper summarizes some recent prominent research towards this direction, particularly for speech and language processing. We also report some results from our group and highlight the potential of this very interesting research field.Comment: 13 pages, APSIPA 201

    Temporal updating scheme for probabilistic neural network with application to satellite cloud classification

    Get PDF
    Includes bibliographical references.In cloud classification from satellite imagery, temporal change in the images is one of the main factors that causes degradation in the classifier performance. In this paper, a novel temporal updating approach is developed for probabilistic neural network (PNN) classifiers that can be used to track temporal changes in a sequence of images. This is done by utilizing the temporal contextual information and adjusting the PNN to adapt to such changes. Whenever a new set of images arrives, an initial classification is first performed using the PNN updated up to the last frame while at the same time, a prediction using Markov chain models is also made based on the classification results of the previous frame. The results of both the old PNN and the predictor are then compared. Depending on the outcome, either a supervised or an unsupervised updating scheme is used to update the PNN classifier. Maximum likelihood (ML) criterion is adopted in both the training and updating schemes. The proposed scheme is examined on both a simulated data set and the Geostationary Operational Environmental Satellite (GOES) 8 satellite cloud imagery data. These results indicate the improvements in the classification accuracy when the proposed scheme is used.This work was supported by the Department of Defense under the Contract DAAH04 94 G0420
    • …
    corecore