
IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 11, NO. 4, JULY 2000 903

Temporal Updating Scheme for Probabilistic
Neural Network with Application to Satellite Cloud
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Abstract—In cloud classification from satellite imagery, tem-
poral change in the images is one of the main factors that causes
degradation in the classifier performance. In this paper, a novel
temporal updating approach is developed for probabilistic neural
network (PNN) classifiers that can be used to track temporal
changes in a sequence of images. This is done by utilizing the
temporal contextual information and adjusting the PNN to adapt
to such changes. Whenever a new set of images arrives, an initial
classification is first performed using the PNN updated up to the
last frame while at the same time, a prediction using Markov
chain models is also made based on the classification results of
the previous frame. The results of both the old PNN and the
predictor are then compared. Depending on the outcome, either a
supervised or an unsupervised updating scheme is used to update
the PNN classifier. Maximum likelihood (ML) criterion is adopted
in both the training and updating schemes. The proposed scheme
is examined on both a simulated data set and the Geostationary
Operational Environmental Satellite (GOES) 8 satellite cloud
imagery data. These results indicate the improvements in the
classification accuracy when the proposed scheme is used.

Index Terms—Cloud classification, Markov chain models,
maximum likelihood, probabilistic neural networks, temporal
updating.

I. INTRODUCTION

SATELLITE imagery has provided us with both global
and local views of our planet and the atmosphere. The

Geostationary Operational Environmental Satellite (GOES)-8
is sending back five spectral channel images of the earth at
intervals as short as 1 min. These images generally capture
prominent changes of clouds and the earth. Traditionally, these
data are inspected visually by meteorologists to determine
cloud types and a wide range of significant weather patterns
such as fronts, cyclones and thunderstorms. Owing to the huge
volume of data (25 GB per GOES 8 satellite) received every
day, manual interpretation of all of these images becomes a
very tedious and sometimes impractical task. Consequently, the
potential of the satellite imagery may not be fully exploited.
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Therefore, highly efficient and robust cloud detection/classi-
fication schemes are needed for automatic processing of the
spatial–temporal satellite cloud imagery for climatological and
many other relevant applications.

In recent years, considerable research has been focused on
cloud classification. A good overview of such efforts is provided
by Pankiewicz [1]. Various feature extraction approaches have
been examined. The spectral information, which is comprised
of a set of radiance measurements of clouds at different bands,
was used in [2], [3]. Textural features, which are often distinct
and tend to be less sensitive to the effects of atmospheric atten-
uation or detector noise, have received more attention in recent
years. Welchet al. [4] calculated several statistical textural fea-
tures based on gray level co-occurrence matrix (GLCM) while
Lameiet al. [5] used Gabor filters to extract cloud textural fea-
tures. Several comparative studies of both the spectral and tex-
tural features for cloud and other satellite imagery classifica-
tions have been conducted by Parikh [6], Gu [7] and Ohanian
[8] and Augusteijin [9] which led to the conclusion that no con-
sistent optimal feature extraction scheme can be devised for this
problem. The other important issue in the literature is the choice
of the appropriate classifier for the cloud classification problem.
Both the traditional statistical and neural network classifiers
have been employed for this application. Simpson and Gobat
[10], [11] used a nested hierarchical partitional clustering algo-
rithm to segment GOES images and an adaptive thresholding
to label clusters as cloudy or cloud free classes. Welch [4] used
linear discrimination techniques while Leeet al. [12] tested a
three-layer back-propagation neural network (BPNN). A Prob-
abilistic neural network (PNN) was also examined by Bankert
et al. [13]. In [14], these three classifiers were benchmarked for
the polar cloud and surface classification. The results showed
that BPNN-based solution achieves the highest classification ac-
curacy, while PNN falls behind within a very small accuracy
measure but requires much less training time compared to the
BPNN-based solution. Owing to the fact that in most of the sit-
uations the truth maps of clouds and background areas may not
be available or reliable, and further a large volume of satellite
images is generally encountered, an unsupervised neural net-
work solution was also exploited in [15]. In spite of the previous
and on-going research efforts in this area, automatic cloud clas-
sification schemes are still far from being practical. This is due,
mainly, to the fact that the characteristics of clouds are highly
variable and difficult to define. Moreover, most of the studies
have only examined one or several images that were obtained
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at a certain time of the day (generally noon time). Only a few
studies considered processing a series of cloud images, where
the temporal variation of the data must be taken into account.

The temporal factor is extremely important in satellite cloud
imagery classification and other remote sensing applications.
Generally speaking, there are two kinds of the temporal fac-
tors. The first one is the temporal contextual information (short-
term). Since clouds and background areas are unlikely to move
or change significantly over short time intervals (one hour),
there is a strong correlation between two consecutive images. It
is widely known in remote sensing that proper utilization of this
temporal contextual information can help to improve the classi-
fication accuracy [16]. A number of temporal contextual-based
classifiers have been proposed such as cascade classifier [17]
and stochastic model based schemes [18]. The second type of
temporal factor that must be considered corresponds to longer
term temporal changes. As time elapses, certain types of clouds
will “look” different in the visible channel due to changes in the
sun angle. At the same time, the ground and low level clouds
will be heated during the daytime and cooled at night producing
textural and radiative changes in the infrared (IR) channel. All of
these changes will be reflected in the satellite imagery and hence
affect the feature vectors. Although these variations may not be
very prominent in short term, they can accumulate over time.
Thus, a fixed neural network may not be able to deal with a se-
quence of images obtained at different time of the day. There are
basically three broad categories of solutions to alleviate these
problems caused by temporal changes. The first category of ap-
proaches attempts to find the features that are somewhat insen-
sitive to temporal changes. However, this itself is a difficult task.
The second class of solutions introduces the temporal factor to
the neural network classifier. For example, the time at which the
image is obtained can be used as an input parameter to the classi-
fier. One can also design a number of neural networks that cor-
respond to different times and seasons. However, one obvious
drawback for these solutions is that a substantial amount of data
must be included in the training set in order to accurately rep-
resent the trend of all possible temporal changes. Moreover, the
useful temporal context information is neglected. The third class
of solutions involves the design of a neural network classifier
that can update itself to accommodate the temporal changes. Un-
like the global classification schemes that use AVHRR, this type
of classifier is primarily designed to work in a specific regional
area where there are high time interval (geostationary) data and,
so far, only during daylight hours when both visible and IR data
are available. The idea behind this approach is to identify the
changes and then make suitable adjustments to the neural net-
work classifier. The main difficulty in this updating process is
that “truth maps” are not available. This problem is addressed in
this paper by developing a novel temporally adaptive neural net-
work-based cloud classification scheme exploiting the temporal
contextual information. A PNN is used as the classifier due to its
good generalization ability and fast learning capability, which
are crucial for on-line updating [19]. A Markov chain-based pre-
dictor is also designed, which makes the initial guess based on
the temporal contextual information. The results of the PNN,
updated to the last frame, and the predictor results are then com-
pared. Depending on the match between the results of the clas-

sifier and the predictor, either a supervised or an unsupervised
learning scheme is used to update the PNN. The well-known
Expectation-Maximization (EM) method, which can implement
both the supervised and unsupervised learning into one proce-
dure, is employed for the updating process. The proposed tem-
poral updating scheme can also be applied to a number of other
important applications where spatial–temporal classification of
a sequence of images is needed.

The organization of this paper is as follows. A brief review
of the PNN is given in Section II. In Section III, the proposed
temporal updating scheme for PNN is discussed. Experimental
results on both the simulated data and GOES 8 satellite data are
presented in Section IV. Section V provides the conclusion and
comments.

II. PROBABILISTIC NEURAL NETWORK (PNN)

PNN is a supervised neural network that is widely used in
the area of pattern recognition, nonlinear mapping, and estima-
tion of the probability of class membership and likelihood ra-
tios [20]. It is closely related to Bayes classification rule and
Parzen nonparametric probability density function (PDF) esti-
mation theory [21].

Consider an input feature vector, where is a -dimen-
sional vector which belongs to one of the classes, ,

. A classifier can be regarded as a mapping,:
that classifies the given pattern

to class . Suppose that the class conditional distribution,
, and thea priori class probability are known, then

the best classifier which can minimize the defined cost func-
tion is given by the fundamental Bayesian decision rule [22].
When the 0-1 cost function, which implies minimum classifi-
cation error rate, is adopted, the Bayes classifier becomes the
maximuma posterior(MAP) classifier, i.e.,

(1)

One main concern when implementing the above optimal
Bayesian classifier is to estimate the class-conditional proba-
bility density function and thea priori class distribution

from the training data set and then use the resultant
estimates as if they were the true values. Generally, thea priori
class distribution is highly dependent on the specific task and
should be decided by the physical knowledge of the problem. It
is often assumed to be uniformly distributed when no physical
knowledge is available. For the sake of convenience, uniform
distribution assumption for is adopted here and thus
only the estimation of class-conditional probability density will
be discussed in the sequel. However, all the neural network
structures and training schemes proposed later can easily be
extended to accommodate the situations where the a prior class
distribution is not uniform.

There are basically two categories of schemes for the
traditional density estimation:parametric approaches which
model the class-conditional densities as multivariate Gaussian
and then estimate the necessary parameters from the training
data set; and thenonparametricdensity estimation. In [23],
Parzen proved that ’s can be estimated from all the
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Fig. 1. Structure of probabilistic neural network.

samples in the training set which belong to the class. When
a Gaussian kernel function is adopted, the Parzen probability
density function estimator can be represented by [21]

(2)

where
is the number of samples in the training set that belong
to class ,
represents theth sample belonging to class,
is the input vector dimension and is called the
“smoothing factor.”

The general PNN structure, which was proposed by Specht in
[21], is a direct implementation of the above PDF estimator and
Bayesian decision rule. It consists of three feed-forward layers:
input layer, pattern layer, and summation layer [21] which are
shown in Fig. 1. The input layer accepts the feature vectors and
supplies them to all of the neurons in the pattern layer. The pat-
tern layer consists of pools of pattern neurons corresponding
to classes. In each pool,, there are number of pattern
neurons. For any input feature vector, the output of each pat-
tern neuron is given by

(3)

where is the weight vector of theth neuron in theth pool,
and the nonlinear function represents the activation func-
tion of the neurons. There are totally neurons in the sum-
mation layer where theth neuron, , forms the
weighed sum of all the outputs from theth pool in the pattern
layer. The weights are determined by the decision cost function
and thea priori class distribution. For the “0-1” cost function
and uniforma priori distribution, all the weights are for
the th neuron. Comparing (2) and (3), it is very easy to see that
the output of theth summation neuron in the PNN is simply the
estimated class-conditional PDF for class, when .
Furthermore, the PNN becomes the Bayesian classifier in (1) if
the classification decision is made by simply comparing the out-
puts of the summation neurons.

From the above analysis, the training of the PNN is very
straightforward. For each new training samplebelonging to
class , the training process adds a new neuron in theth pool
of the pattern layer, with the weight vector which is. Although,
this noniterative training procedure is very fast, a very large
network may be formed since every training pattern needs to
be stored. This leads to extensive storage cost and computation
time during the testing phase.

One technique for improving the PNN is to reduce the
number of neurons, i.e., use fewer kernels but place them at the
optimal places. Several schemes using Kohonen and learning
vector quantization (LVQ) have been proposed for clustering
the training samples [24]. In [25], [26], Streitet al. improved
the PNN by using finite Gaussian mixture models. This neural
network structure is adopted in this paper and briefly described
below.

For any class , suppose the class conditional
distribution is modeled approximately by a Gaussian mixture,
i.e.,

(4)

where is the number of Gaussian components in class
and ’s are the weights of the components which satisfy the
constraint , denotes the multi-
variate Gaussian density function of theth component in class

. Further, we have

(5)

where and are the mean vector and covariance matrix
of the th Gaussian component for class, respectively. The
Gaussian mixture model described in (4) and (5) can also be
easily mapped to the PNN structure. For theth pool in the pat-
tern layer, only neurons are needed. The weight set asso-
ciated with each pattern neuron is , ,

, and the input–output relation is specified by
(5). In the summation layer, the weight fromth neuron in pool

of pattern layer to theth neuron in the summation layer is .
By configuring the PNN in this way, the output of the PNN will
be the same as the Gaussian mixture model output given by (4)
and (5). Since generally is much smaller than the number of
training samples that belong to class, , the pattern layer of
the PNN is therefore substantially simplified from its original
version. The price paid for this simplification is the elimination
of the noniterative training procedure. Instead, the weights of
the PNN, i.e. the parameter sets of the mixture model for each
class, need to be estimated from the training data set.

Let denote the parameter set used
to describe the mixture model of classand de-
note the whole parameter space for the PNN. There are several
methods available that can be used to estimate. If we assume
that the parameters in are unknown fixed quantities, the max-
imum likelihood (ML) estimation method is a suitable choice.
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Now suppose that the training samples drawn independently
from the feature space form the set, which can be further
separated into subsets , , in which all the
samples belong to class. The ML estimation of parameter set

is then given by

(6)

For the computational efficiency, generally we will maximize
the equivalent log-likelihood, i.e.,

(7)

The last step in (7) is arrived at based upon the assumption that
the conditional probability of class is solely decided by the
parameter set of that class,and not by the parameter set of the
other classes. The maximization of the log-likelihood function
can be done using a gradient descent scheme. However, a more
efficient way is to use the well-known expectation-maximiza-
tion (EM) approach, which was proposed by several researchers
including Dempster [27]. The EM approach can help to achieve
the maximum-likelihood estimation via iterative computation
when the observations are viewed as incomplete data. There are
two major steps in this approach: the expectation () step and
maximization ( ) step. The step extends the likelihood func-
tion to the unobserved variables, then computes an expectation
with respect to them using the current estimate of the parameter
set. In the step, the new parameter set is obtained by max-
imizing the resultant expectation function. These two steps are
iterated until convergence is reached. The reader is referred to
[27] for the detailed description on the EM algorithm. For the
ML training of PNN, it is shown [26] that the parameter set can
be estimated iteratively using the followingand steps:

• Step

and (8a)

where is a random variable indicating which
Gaussian component generates the observation pattern.
For a sample belonging to class , variable is
defined by

if feature comes from th Gaussian
component in class

otherwise

which is called unobserved variable in the EM approach
[27], [28].

• Step: The new parameter set can be estimated by

(8b)

(8c)

and

(8d)

The convergence property of this two-step iterative procedure is
proven in [27]. Although the EM scheme may also end up with a
local minimum, like the gradient descent based scheme, it gen-
erally converges much faster. There is one important observation
from (8a)–(8d): the estimation for parameter set of classis
only dependent on the training samples in this class, i.e, the opti-
mization process can be solved separately for each class without
considering the effect of the others. This is especially suitable
for the cloud classification application since a new cloud type
can easily be added to the system without affecting the other
classes. Moreover, in the updating process, we have the choice
of only updating those classes that are affected by the temporal
changes. Another benefit of this property is the reduced training
time due to the fact that each class can be trained separately, thus
requiring a small number of neurons and training samples. On
the other hand, the price one pays for this property is that the
classification accuracy is dependent on the real distribution of
the feature space. If the Gaussian mixture model is a good as-
sumption, the classifier will achieve high accuracy. Otherwise,
the trained PNN may not be optimal in the sense of minimum
classification error. Although the number of Gaussian compo-
nents can be increased so that the mixture model can be approx-
imated to any distribution (it becomes a Parzen window PDF es-
timation when the number of components is equal to the number
of training samples), the computational cost may become unac-
ceptable. The number of Gaussian components is generally de-
cided experimentally.

III. T EMPORAL UPDATING OF THEPROBABILISTIC NEURAL

NETWORK (PNN)

Once the parameter set is estimated using EM, the PNN can
be applied to the satellite cloud image classification problem
[29]. However, the temporal factor must be taken into account
when processing a sequence of satellite images. Considering
two satellite images of the same area but obtained at different
times, three kinds of changes are generally observed in these im-
ages. The first one is the spatial movement of certain clouds that
can be mainly due to wind effects. This change can be modeled
by a Markov process. The second type of variation is the class
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Fig. 2. Block diagram of the proposed temporal updating scheme.

transition, e.g., certain clouds may be generated, terminated or
evolve to other classes. Although these variations commonly
occur in sequences of satellite cloud images, they will not usu-
ally affect the performance of the classifier unless a new class is
generated. Nonetheless, if they are modeled properly, they can
even help to improve the classification accuracy. The third type
of variation is due to the temporal changes of the features. A
number of factors such as sun angle and ground heating/cooling
effects impact the features of clouds and background areas. Al-
though the temporal changes of the feature space changes are
not so prevalent over a short time period, say 1/2 or 1 hours, this
effect accumulates and finally will degrade the performance of
the classifier significantly. One solution to this problem is to fre-
quently update the classifier to accommodate such changes. In
this section, a novel temporal adaptation scheme for the PNN is
proposed. The block diagram of the proposed scheme is shown
in Fig. 2.

Suppose that the cloud imagesat the previous time frame, up to
frame , are correctly classified and the weights of the neural
network have been updated to frame . Now, the new frame
which includes both visible (ch1) and IR (ch4) channels arrives.
The new images go through the feature extraction stage [29] and
will then be applied to the PNN classifier. If the interval between
the adjacent frames is short enough (1/2 or 1 h for GOES 8 satel-
lite data), the changes of these features will be minimal, hence
the old PNN can still correctly classify most of the data. Due to
the rich temporal class contextual information between adjacent
frames, i.e., most of the cloud and background type (land/water)
won’t move or change abruptly to other types, a prediction can
be made based on the classification results of the previous frame.
The initial classification result of the PNN and the output of the
predictorarethencompared. If theclassification labelofan image
block is the same for both the PNN and predictor, then that block
is classified with a high level of confidence. We refer to this type
of class information as “pseudo truth.” All the blocks of this kind
will form the set . On the other hand, all of the blocks for
which the old PNN and the predictor provide different class la-
bels form the data set . Both data sets, and are
used for the PNN updating even though the learning mechanisms
are different. After the temporal adjustment, the new weights of

the PNN will be used to classify the image again and generate the
final result for this frame . This process will be repeated when-
ever a new frame has arrived. In the following sub-section, both
the prediction process and the PNN updating schemes will be de-
scribed in detail.

A. Prediction

The prediction block in Fig. 2 is designed to provide an ini-
tial guess of the class of the current data based on the previous
classification results. Its feasibility lies in the fact that there is
rich temporal contextual information between adjacent frames.
In [16], the contextual information is classified into two main
categories: “class dependent” and “correlation-based,” both of
which exist spatially and temporally. The first category includes
all the information on class distribution. For example, certain
positions in the image tend to belong to the same class in the ad-
jacent frame (temporal class dependency context). In the mean-
time, most of the classes are likely to cover a relatively large area
in one frame instead of appearing in the isolated blocks (spa-
tial class dependency context). There will be a rich class depen-
dency context in satellite imagery series as long as the time in-
terval between frames is not too long compared to cloud move-
ment and changes. This assumption is typically true for most of
the GOES imagery data where the time interval between frames
is relatively short i.e. 30 min to 1 h. The second kind of contex-
tual information, i.e., correlation-based, refers to the character-
istics of the feature distribution in the adjacent (spatial) block
or (temporal) frames. This information can help to differentiate
between classes. However, this is more difficult to model and
generally incurs significant computational cost. Since the initial
guess is sufficient in the prediction block, only the spatial–tem-
poral class dependency information is used here.

The spatial–temporal class contextual information is gener-
ally modeled by a Markov chain. In order to simplify the com-
putations, 1st order Markov chain is considered here, i.e, the
class of the current frame is solely dependent on the previous
one. Moreover, for a block in the current frame, we define its
spatial temporal neighborhood in frame and assume that
all the temporal class contextual information for that block is
conveyed by its spatial–temporal neighborhood in frame .

Assume denotes the feature vector of blockin frame
, where is the location vector of that block in the

image and refers to the physical class of that block.
The spatial–temporal neighborhood of blockin frame is de-
fined in frame as
where is the neighborhood defining set. An example of such
neighborhood is shown in Fig. 3. Furthermore,

represents the class label of .
Now let us assume that the previous frames up to frame

have correctly been classified, i.e., is known for block
. For the current frame, we want to predict the label of block
given the classification result of its spatial–temporal neigh-

borhood, . If the a posterioriconditional probability
is known, then the MAP predictor

can be simply implemented as

(9)
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Fig. 3. Example of a temporal neighborhood. In this case,vvv 2 	 =
f(�1; �1); (�1; 0); (�1; 1); (0; �1); (0; 0); (0; 1); (1; �1); (1; 0);
(1; 1)g.

Although the idea is quite simple, it is very difficult to find
the conditional probability, , which
specifies the spatial–temporal class dependent context. One
straightforward scheme is to estimate it from the training set.
However, this approach will rarely produce meaningful results
in practice. This is mainly due to the fact that there are so
many different combinations of and that
there may not be enough training samples. Furthermore, some
combinations may not even appear in the training set. There-
fore, it is more feasible to specify a model for this conditional
probability based on the physical background of the problem.
We assume that there are two underlying Markov chains. The
first one describes the spatial movement in the image. For the
object in block in the current frame may come from any block
in its spatial–temporal neighborhood in the previous frame. A
random vector is defined to represent this spatial movement,
i.e., the object in block , in frame will move
into block in frame . On the other hand, the second Markov
chain describes the possible class change of that object. The
class transition Markov chain is needed otherwise the current
block will always be one of the types appeared in its spatial
temporal neighborhood, which is not the case in real situations.
Applying this model and using total probability, we can write

(10)

For the sake of simplification, two assumptions are made as fol-
lows:

• For the spatial transition Markov chain, we assume that

(11)

i.e., the spatial transition probability is only decided by
the relative position of that block in the spatial–temporal
neighborhood and is independent of the class label in its
spatial–temporal neighborhood.

• When the content of block in frame moves
to the block of the current frame, its class may also
change. It is reasonable to assume that such class transi-
tion is solely dependent on the class of that object in frame

, i.e, and is not related to the label of
other blocks in the spatial–temporal neighborhood. Thus,

(12)

In fact, the above assumptions imply that the two Markov chains
are statistically independent of each other. Under these assump-
tions, the conditional probability in
(10) becomes

(13)

and the predictor in (9) can be computed as

(14)

The position and class transition probabilities can be com-
puted from the training data or decided based on the physical
background of the problem. For example, for the case of the
spatial–temporal neighborhood in Fig. 3, the spatial transition
probability can take on the following values:

for

for
(15)

Since the objects are generally not likely to change positions in
adjacent frames, a relatively large position transition probability
is given to this situation, i.e. for . The class transition
probability can be heuristically specified in a similar way, i.e.,
retaining the same class has a higher probability, while the tran-
sition probability to another class is much lower. This kind of
distribution can be represented by

if

otherwise

(16)
where is the total number of classes andis a user defined
number between 0 and 1 that satisfies . It is
proved in Appendix B that the value ofis not important for the
final prediction result as long as the class transition probability
takes this form. Furthermore, the predictor in (16) is equivalent
to a simpler form

(17)

where

otherwise,

is similar to the Kronecker delta function.
It is clear that accurate prediction can not be achieved only

based on the temporal contextual information. However, if the
output of the PNN achieved the same classification result for the
same block, then a much higher confidence can be assured. All
the blocks that have the same labels from both the predictor and
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the PNN updated to frame form the data set while
the others form the set . In the following section, these two
data sets will be used to update the PNN.

B. PNN Temporal Updating Scheme

The updating process of PNN is a type of “on-line training.”
There are basically two requirements for the updating process.
First, the updating process must be stable, i.e., the updated
PNN must maintain good classification capability for those
previously established categories. Second, the updating must
be plastic to accommodate temporal changes of the data and
new class generation. Note that the only truth available for
comparison in this updating process is the “pseudo truth”
obtained by utilizing the temporal contextual information and
the old classifier’s results. However, this class information will
be used as if it is the truth.

Assume that the training samples drawn independently from
the current feature space form the training setwhich is ba-
sically the set of features for frame. This training set can be
further separated into two sets: and , where in-
cludes all of the samples for which the class label is assumed
to be known, while all the samples of unknown types belong to

. Moreover, let , , denote a subset of
in which all the samples are known to belong to. The

neural network structure is the same as that discussed in Sec-
tion II and does not change in the updating process. The goal
is to re-estimate the parameter set for PNN so that it can more
accurately represent the distribution of the temporally changed
feature space. Maximum likelihood (ML) criterion is adopted in
this PNN updating process.

Three types of cost functions are considered based on whether
or not the pseudo truth information and the whole data set are
used in the training process:

1) Cost Function 1: Exclusively Unsupervised Training:

(18)

In this cost function, no class information from training sam-
ples was used. The training result is completely decided upon
by the distribution of the features, which may not guarantee a
good classifier and the stability requirement. As a result, this
cost function is not a suitable choice.

2) Cost Function 2: Exclusively Supervised Training:

(19)

In this cost function, only those samples in the set are
used, for which the class of samples are known. This super-
vised training will lead to an updated neural network which will

generally perform at least as well, on this data set, as the pre-
vious one. Thus, the stability requirement is likely to be satis-
fied. However, since the set is only a subset of the whole
feature set and their distributions are not generally the same,
the resultant neural network may not be able to reflect the dis-
tribution of the whole feature space,, hence degrading the
classification performance.

3) Cost Function 3: Combination of Supervised and Unsu-
pervised Learning:

(20)

This cost function is a combination of the two aforementioned
cost functions. All the samples and available class information
are used. Maximizing the first part corresponds to the super-
vised learning process which can help to keep the stability of
the training, while maximizing the second part leads to unsu-
pervised learning which can help to form a more accurate rep-
resentation of the distribution for the whole feature space, thus
providing the plasticity needed for this problem. Fortunately,
this is still a maximum likelihood estimation problem and the
EM approach can be used to maximize this cost function as a
whole. This approach is similar, in principle, to that in [28]. The
detail derivation to maximize this cost function is given in Ap-
pendix A. It can be proven that the local maxima can be achieved
by the iterative use of the following 2-steps until convergence is
reached. The parameter set of the old PNN can be used as the
initial values.

• step

where

and (21a)

where (21b)

where and are random variables indicating
which Gaussian component generates the observation pat-
tern. However, they are defined on a different set:
is defined on the set where the class label of the
input is known while is defined on the set where
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neither class nor mixture component information is avail-
able. Please refer to Appendix A for further information.

• step [see (21c)–(21e), shown at the bottom of the page.]

Several issues must be carefully considered in the implemen-
tation of this scheme. The main idea of this updating scheme is
to re-estimate the parameter set of the PNN so that it can more
accurately represent the changed space. This, generally requires
the availability of substantial amount of data, which may not be
possible in many real-life applications. This data poverty not
only prevents the accurate estimation of the parameters for cer-
tain Gaussian component but also makes it difficult to update
the proportional weights among different components. Consid-
ering these issues, we choose to update only those Gaussian
components which have enough samples in set. Further-
more, only the mean vectors are updated, while the covariance
matrices and weights are assumed to be unchanged over time
since generally accurate estimation of these variables requires
larger data set. Another important issue in updating is to bal-
ance the contributions between the unsupervised and supervised
training. Let us rewrite (21d) as shown in (22a) where

and

(22b)

It can be shown that if we only perform supervised learning on
the set, then the updated mean vector will be . On the

hand, is the result of the unsupervised learning on the
data set . Moreover,

(22c)
controls the contributions of the two types of training.
Notice that the terms and

represent the expected number of
samples in and sets that belonging to component
in class . Thus, the combination factor is totally decided by
the newly arrived data set. Also, the result in (22a) implies that
the solutions to (20) can be expressed in terms of the weighted
combination of the supervised and unsupervised solutions
while the weights, and ( ) are determined by number and
distribution of the samples in the sets of and . For the
supervised learning to dominate the final results, i.e., satisfy
the stability requirement, we define a constant factor and
require that the combination factor .

Based on the above discussion, we improved the updating
scheme by adding some necessary inspection steps. The new
scheme is given as follows:

1) The parameter set updated to the last frame is used as the
initial value. For the th Gaussian component in class,

and
2) Use (21a) and (b) to calculate (for

) and (for ).
3) Check to see if there is enough number of samples avail-

able for updating the mean of this Gaussian component.
If , where is

called the “updating threshold,” then no updating will be
performed on this Gaussian component because of data
poverty. Otherwise go to the next step.

(21c)

(21d)

(21e)
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4) Calculate the supervised and unsupervised learning re-
sults, and , as well as combination factor.

5) If , let . This step ensures that the
supervised training will play more important role in the
updating than that of the unsupervised learning.

6) Updating: If , ( is a
pre-defined factor called as “sufficient threshold”), which
indicates that there are enough samples for accurate esti-
mation, then we choose the newly estimated parameter to
replace the old one, i.e.,

Otherwise, the newly estimated value may not be reliable
hence we choose to combine it with the corresponding
parameter of the last frame, i.e.

where is the initial value (the parameters of the last
frame) and the factor satisfies and can be
calculated by

The above steps are performed iteratively until convergence is
reached.

IV. EXPERIMENTAL RESULTS

In this section, two experiments were designed to examine
the effectiveness of the proposed temporal updating scheme. In
the first case, a simulated data set was used. In spite of its sim-
plicity, this data set can help to demonstrate the properties of the
proposed scheme very well. The second test was done on two
sequences of GOES-8 satellite images. A cloud classification
system was implemented and its performance was examined in
this case.

Fig. 4. Data setD for testing.

A. Experiment 1: Simulated Data Set

In this experiment, the database consists of only two classes.
The data for these classes are uniformly distributed in the 2-D
space [0, 0.3] [0, 1] and [0.3, 1] [0, 1], respectively, as
shown in Fig. 4. These data sets have several unique features.
First, the distribution is not Gaussian thus posing a big challenge
for the proposed method which is based upon Gaussian mix-
ture models. Second, the simple unsupervised-based training
scheme is not likely to achieve good results since the distribu-
tion is uniform and the areas of the two classes are not the same.

The PNN described in Section II was adopted and only one
Gaussian component (worst case scenario) was assigned to each
class. A total of 400 samples for each class were used in the
training phase. The classification error rate of the resultant PNN
was 1.38%. This data set,, was then exposed to four kinds
of temporal changes , , and four new sets
were generated by : . Specifically, they are defined
as follows:

1) Data set , where :

2) Data set , where :

3) Data set , where :

4) Data set , where :

where and are Gaussian white noise with zero mean and
standard deviation 0.05. Data set was designed to simulate
the expansion trend of the features while data setwas gen-
erated to represent the shrinkage case. Moreover,and
correspond to the case where the changes are translational. All
these four kinds of changes are very common.

(22a)
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TABLE I
THE CLASSIFICATION ERROR RATES (%) OF

THE THREE PNN

The proposed temporal adaptation scheme was then applied
to these four new data sets. Since there is no complicated spatial
temporal context for this example, for a sample
in the current data set , , its spatial–temporal
neighborhood is defined to include only one sample in, which
is determined by the inverse mapping of, i.e. . After
the updating process, the new PNN is used to re-classify the
temporally changed data set and the resultant classification error
rates are given in Table I.

For the sake of comparison, the accuracies for two other
schemes are also provided. The first one corresponds to the
results of the PNN trained on the new data set. The second
one corresponds to the nonupdated case where the PNN that
was trained on the old data set,, was used. From Table I,
it can be found that the performance of the nonupdated PNN
degraded significantly when temporal changes are present. The
classification error rate jumped from 3–5% for the ideal case to
more than 7.7%. After temporal updating, the PNN performed
much better. For the data set and , the improvement
on the accuracy rate for the updated PNN is around 6–8%
while for the data set and , this is around 1.4–2.1%. It is
interesting to mention that the updating improvement varies for
each data set. There are several factors that contribute to this
phenomenon, such as the number of samples in the updating
sets and , and the parameter set of the old PNN,
but perhaps the most important one is that the unsupervised
learning plays a different role for each case. For data set
and , the actual decision boundary is shifted to the right
compared to that of the original data set. Thus most of the
samples in the set belong to class 1. Owing to the initial
value of PNN, the unsupervised training on will help to
move the decision boundary to the right, which is the correct
direction. For the data set and , the situation is just the
opposite, so the updating results are inferior to the other cases.
Overall, the proposed updating scheme worked well on this
simulated data set.

B. Experiment 2: GOES 8 Satellite Image Classification

In order to test the proposed temporal updated scheme for
cloud classification application, a GOES 8 satellite imagery
database was used for this purpose. The GOES 8 satellite
carries five channel sensors. However, only two channels,
namely visible (channel 1) and IR (channel 4), were used since
most of the other meteorological satellites only carry these two
channels. Two image series acquired on May 1st and 5th, 1995
between 15:45–20:45 UTCat one hour interval, were chosen

Fig. 5. GOES 8 satellite images obtained in May 1st, 1995 at time 15:45 UTC.

for this study. Figs. 5 and 6 show the image pair (visible and
IR) obtained at the beginning, 15:45 UTC and at the end, 20:45
UTC, respectively, for the sequence collected on May 1st, 1995.
These images of size 512 512 pixels (spatial resolution of 4
km/pixel) cover the mid-west and most of the eastern part of
the U.S., extending from the Rocky Mountains to the Atlantic
coast. The images cover mountains, plains, lakes and coastal
areas where clouds have some specific features that are tied
to topography. Lake Michigan is in the upper right corner and
Florida is located in the lower right, with Gulf of Mexico in the
lower center of the image. These sequences are of particular
interest because of the presence of a variety of cloud types. For
example, in Fig. 5 one can find thin cirrus in the left middle part,
cirrostratus in the right middle part and low/middle-level clouds
(stratocumulus and altostratus) in the center part as well as
water and land areas. Since ground truth maps are not available
and/or reliable, two meteorologists were asked to identify all
the possible cloud types as well as the background areas based
on the visual inspection and other related information. This
was accomplished with the aid of a computer software package
developed solely for this purpose. Approximately 50% of each
image was analyzed and classified into ten cloud/background
classes which are: Cold Land (Clnd), Land (Lnd), Water (Wtr),
Stratus (St), Cumulus (Cu), Altostratus (As), Stratocumulus
(Sc), Cirrus, and CirroStratus (Cs).
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Fig. 6. GOES 8 satellite images obtained in May 1st, 1995 at 20:45 UTC.

The visible and IR images were first partitioned into small
blocks of size 8 8 corresponding to an area of size 3232
km. A feature extraction operation was then performed on these
blocks to extract pertinent features for classification. Various
textural feature extraction schemes for the cloud classification
application were studied and compared in [29]. These studies
indicated that the Singular Value Decomposition (SVD),
2-D Wavelet Transform and Gray Level Concurrence Matrix
(GLCM) textural features achieved almost similar result.
Nonetheless, since SVD scheme is much less computationally
demanding, it was adopted in this study. Using the SVD ap-
proach, a total of 16 singular values were first extracted, 8 from
every 8 8 block in each channel. To remove the redundancy
among these features, a sequential forward feature selection
process was employed in which the Bhattacharya distance
is used to measure the class separability. After the feature
selection process, only 6 features with good discriminatory
ability were chosen for the subsequent classification process.
These features correspond to the 1st, 3rd, 5th singular values in
the visible channel and the 1st, 3rd and 6th in the IR channel.
For a detail discussion on feature extraction/extraction, the
reader is referred to [29].

The initial PNN was trained on six image pairs obtained from
15:45 UTC to 17:45 UTC on both May 1st and May 5th, 1995.
Half of the labeled blocks in these image pairs made up the

training set while the rest formed the test set. The Cirrus type
has the largest number of training samples (2629) while the Cold
Water type has the least number of samples (46). The detailed
information on the training of this PNN including the number
of training samples for each class and the performance evalua-
tion is described in [29]. Fig. 7(a) and (b) show the classification
results of the PNN on the image pairs collected at 15:45 UTC,
May 1st (shown in Fig. 5) and the areas labeled by the meteorol-
ogists, respectively. Visual inspection of the color-coded image
in Fig. 7(a) indicates that different cloud/background areas have
been well-separated and the results agree very well with the me-
teorologist labeling in Fig. 7(b). However, when this PNN was
applied to the images obtained at 20:45 UTC of the same day,
the results were very poor. The color-coded image in Fig. 8(a)
shows the result while the corresponding labeled image (mete-
orologists) is shown in Fig. 8(b). Comparing to the results in
Fig. 7(a), many of the cloud areas have been incorrectly as-
signed to different classes although the clouds may not change
a lot. The large area of Cumulus cloud over the Gulf of Mexico
(lower center) has been misclassified to a mixture of Cirrus and
Stratocumulus. The Stratocumulus clouds in the upper central
part have been misclassified as Altostratus. In addition, several
other regions have been misclassified into Cirrus type, for ex-
ample, the Stratocumulus clouds in the upper right corner and
the Altocumulus cloud in the central right part. Several factors
may possibly contribute to this poor performance. The training
sets are not large or representative enough for some classes. The
major factor, however, has to do with the temporal changes in
the data. Fig. 9(a) and (b) provide the scatter plots of the orig-
inal images at time 15:45 UTC and 20:45 UTC, May 1st, re-
spectively. The -axis represents the normalized pixel intensity
in the IR channel that reflects the temperature. Generally, land is
the warmest class at day time in May leading to the largest pixel
value, followed by water, low level clouds, middle level clouds,
while the cirrus is the coolest class. On the other hand, the values
on the -axis describe the reflectivity in the visible channel.
Water has the lowest reflectivity (at low sun angles—due to ra-
diation being reflected away from the satellite sensor rather than
scattered toward it) giving rise to the smallest value, followed by
ground and then clouds that have a high scattering component.
Careful comparison of the two scatter plots can easily reveal
the differences. The most obvious distinction is in the upper left
corner that corresponds to the land areas. Due to the heating ef-
fects, this region has expanded to cover a larger area after five
hours. In the mean time, due to sun angle changes, clouds are
not as bright in the visible channel as they were before. There
are many pixels whose values exceed 0.5 in the visible channel
at 15:45 UTC while very few of them exist at 20:45 UTC (the
lower sun angle causes more energy to be reflected from the
cloud, and away from the satellite).

The proposed temporal adaptation approach was then ap-
plied to this image series. The updating process starts from
18:45 UTC and happens every hour. The network struc-
ture as well as the weights and covariance matrices of the
Gaussian components are kept unchanged while the mean
vectors are updated when there are enough samples available
[i.e., ]. All the constants
needed in the training algorithm are decided experimentally.
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Fig. 7. (a) Classification results at time 15:45 UTC, May 1st, 1995. (b) Cloud/background classes labeled by meteorologists.

Fig. 8. (a) Classification results of the nonupdated PNN at time 20:45 UTC, May 1st, 1995. (b) Cloud/background classes labeled by meteorologists.

Specifically, the updating threshold was chosen to be 5 and
the sufficient threshold was set at 10. The combination factor

was 0.9 for the background classes and 0.5 for the cloud types.
This difference on settings is due to the observation that the
unsupervised training tends to degrade the separation between
land and water classes, so largewas chosen to reduce the
effect of unsupervised learning. The size of the spatial–temporal
neighborhood for the predictor was 33 for this example.

Fig. 10 shows the classification result of the image pair ob-
tained at time 20:45 UTC, May 1st using the updated PNN.
Comparing with the nonupdating results in Fig. 8(a), significant
improvements can be observed. For example, the classification
errors made by nonupdated PNN on the Cumulus clouds over
the Mexico Gulf are corrected and most of the clouds in the
upper center area have been classified to the correct Stratocu-
mulus type. Furthermore, the classification accuracy improve-
ments are also observed in both the upper right corner and the
Altostratus clouds in the center right part. On the other hand,
for those regions that were not changed, the updated PNN made
the same decisions as the nonupdated PNN that demonstrates
the stability of the updating approach.

Besides the visual inspections, the classification accuracy
rates for both the nonupdated and updated PNN are examined.
There are totally nine types of clouds identified in the image
pair at 20:45 UTC (Stratus type is missing). The number of
labeled blocks for each class is given in Table II. It should be
mentioned that the way meteorologists label images differs
from that of the neural network classification system, i.e.,
instead of labeling each block individually, they first try to
identify certain regions and then assign that whole area into

one category. As a result, it is possible that some blocks in that
region may belong to different classes since the labeling is done
based upon global information. Also not all the blocks have
been labeled and some regions have mixed cloud types hence
making the classification task difficult. Due to all these factors,
the accuracy rate may not fully represent the performance of
the classifier and consequently the visual inspection of the
results would be the best way to evaluate the performance.

The confusion tables for the PNN classifier before and after
the updating are given in Tables III and IV, respectively. It was
found that the overall classification rate increased from 65.8%
to 75.4% after the updating process. Furthermore, the accuracy
rate are significantly improved for the Warm Water (WWtr) and
almost all the cloud types, namely Cumulus (Cu), Altostratus
(As), CirroStratus (Cs) and Stratocumlus (Sc) classes, while the
accuracy is not changed for Cold Land (CLnd) type. Warm Land
(WLnd), Cold Water (CWtr) and Cirrus (Ci) are the three types
that the accuracy degrades after the updating. For the Cold Water
(CWtr) class, although 20% accuracy degradation seems a lot,
it can easily be explained since it is just caused by one block
misclassified as the Warm Water (WWtr) type (there are only a
total of 5 labeled blocks available). Similarly, the slight accuracy
degradation on the Warm Land (WLnd) class is mainly caused
by two blocks that were wrongly classified, one as Cold Land
(CLnd) type. The degradation of accuracy on the Cirrus (Ci)
class, on the other hand, is primarily due to the fact that the re-
sult of the nonupdated PNN for this class is seriously biased be-
cause of the predominant number of blocks in this class. On the
contrary, the accuracy improvements for some of the cloud types
are significant. For example, for the Cumulus (Cu), Altostratus
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Fig. 9. Scatter plots of the cloud images got in May 1st, 1995.

(As) and Stratocumulse (Sc) class, the accuracy rates after the
updating go up 42.2%, 20.7% and 45.7%, respectively. These
results clearly demonstrate the effectiveness of the proposed up-
dating scheme.

The same tests have also been applied to the image sequence
collected on the May 5th. Very similar results were achieved.
Overall the proposed updating-based PNN achieved better and
more consistent classification results than those of the nonup-
dated ones. Not only the color-coded results conform very well
with the meteorologist’s labeling, but also the classification
rates were improved. The price paid for this improvement is
the extra computation cost due to the updating process. The
proposed scheme was implemented in MATLAB running on a
Pentium 266 MHz. The CPU time for processing the two image

Fig. 10. Cloud classification result of the updated PNN at time 20:45 UTC,
May 1st.
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TABLE II
NUMBER OF LABELED BLOCKS FOREACH CLASS IN THE IMAGE PAIR OF 20:45 UTC, MAY 1st, 1995.

TABLE III
CONFUSIONMATRIX FOR THE NON-UPDATED PNN CLASSIFIER (%). OVERALL CLASSIFICATION RATE IS 65.8%. (THE RESULTS IN EACH ROW OF THETABLE

REPRESENT THENEURAL NETWORK CLASSIFICATION ACCURACY FOREACH CLASS DETERMINED BASED ON THERESULTS OFEXPERTLABELING.)

TABLE IV
CONFUSIONMATRIX FOR THE UPDATED PNN CLASSIFIERUSING SVD FEATURES(%). OVERALL CLASSIFICATION RATE IS 75.4%. (THE RESULTS INEACH ROW OF

THE TABLE REPRESENT THENEURAL NETWORK CLASSIFICATION ACCURACY FOREACH CLASS DETERMINED BASED ON THERESULTS OFEXPERTLABELING.)

sequences is 943 and 827 s, respectively. Since the neural
network has to be updated three times for each image sequence
(18:45 to 20:45 UTC), the computational cost is approximately
5 min per frame. We expect that the processing time can further
be reduced when the proposed approach is optimized and
implemented using a more efficient computer language and on
faster processor.

V. CONCLUSIONS

Many meteorological applications would benefit from an
automated cloud classification system. However, the study
of cloud classification is still in its infancy. There are several
factors that contribute to the difficulties in cloud classification.
These include: high variability of cloud features and lack of re-
liable ground truth. Furthermore, when dealing with sequences
of consecutive satellite images, the temporal changes of the
features in those images must be considered.

In this paper, a PNN-based cloud classification system with a
novel temporal updating capability has been proposed. When a
new image arrives, the system first performs initial classification
as well as a prediction based upon the temporal class dependency
context. This information is then used to update the PNN classi-
fier.MLcriterion isadopted in theupdatingprocesswhile theEM
algorithm is used to estimate the new parameter set of the PNN.

The input image is classified again by the updated PNN. The pro-
posed scheme is examined on both a simulated data set and two
sequences of GOES-8 satellite images, and promising results are
achieved. Future research would involve a more thorough anal-
ysisof thisscheme. Inparticular,among those issues tobestudied
are: how to further overcome possible data poverty problem, how
to present the error propagation. Additionally, other on-line up-
dating approaches may be explored.

APPENDIX A
DERIVATION OF THE UPDATING PROCESSUSING EM APPROACH

For the updating process, our goal is to estimate the parameter
set that will maximize the cost function in (20), i.e,

where

(A.1)

Direct analytical solution for (A.1) is difficult to obtain. Instead,
we will apply the EM approach. The basic idea of the EM al-
gorithm is that the maximization process may be simplified if
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the missing variable is added to the data set. In this application,
the missing information is identification of the Gaussian com-
ponent that generates the observation pattern. Notice that for the
samples in set and , the missing information is not the
same. For a sample in set belonging to class, we can
define a variable by

if feature comes from th Gaussian
component in class

otherwise, and
(A.2)

On the other hand, for the samples in set , for which the
class information is missing, we can similarly define variable

by
if feature comes from classand the th

Gaussian component generates it.

otherwise, and

(A.3)
All and form the set . The observation feature set
is generally called the incomplete data set while the set

is called the complete data set, since the missing in-
formation has been added to it. We can extend the likelihood
function to include the unobserved variable and compute the
log–likelihood of the complete data set as

(A.4)

Using the Gaussian mixture model in (4), we have

(A.5)

Since both and are delta type functions, the summations
and log operation can be interchanged in the last step.

One important property of the EM scheme is that the like-
lihood function of the incomplete data set in (A.1) can be
maximized by iterative application of the and -steps to the
complete data likelihood function, [25].

In the -Step, we take the expectation of the complete data
likelihood based on current parameter set, and observation
set . This expectation is denoted by , i.e.,

(A.6)

According to the definition of in (A.2), for the sample
belonging to set, we can calculate

(A.7)

Similarly, for the samples from set , we can get

(A.8)

If we assume that thea priori class distribution, , are uni-
formly distributed, then

(A.9)
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The second step in the EM algorithm is to maximize the
expectation function with respect to the parameter
set . This -step can be done by taking the derivative of

and setting it to zero. The optimal parameters will
be obtained by solving the resultant equations. This process
is rather straightforward, since the parameters
are decoupled from each other after taking the derivative. The
Langrange multiplier is used to solve for parameter in
order to satisfy the constraint . The detailed
mathematics is omitted here and the final result is given in
(A.10)–(A.12) where and .

APPENDIX B
PROOF OF(17) FOR TEMPORAL PREDICTOR

The MAP temporal predictor is given in (9), i.e.,

(B.1)

where thea posterioriconditional probability can be computed
using (13), which is rewritten here for reader’s convenience.

(B.2)

Furthermore, we assume that the class transition probability is
in the form of

if

otherwise

(B.3)
where the transition probability between the same class,, is
generally much larger than the transition probability to the other
class, . Now we want to prove that (16) is

an equivalent predictor to that in (B.1). Substituting (B.3) into
(B.2), we get

(B.4)

where

otherwise

is similar to the Kronecker delta function. For any two classes
, and , the difference between conditional probability is thus

given by

(A.10)

(A.11)

(A.12)
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(B.5)

Since , the sign of
is solely decided by

and not related to the value of. So instead of using thea poste-
riori conditional probability in the temporal predictor of (B.1),
it is equivalent to make prediction using

(B.6)
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