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Abstract—In cloud classification from satellite imagery, tem- Therefore, highly efficient and robust cloud detection/classi-
poral change in the images is one of the main factors that causesfication schemes are needed for automatic processing of the

degradation in the classifier performance. In this paper, a novel  ga4ia1 temporal satellite cloud imagery for climatological and
temporal updating approach is developed for probabilistic neural L
many other relevant applications.

network (PNN) classifiers that can be used to track temporal .
changes in a sequence of images. This is done by utilizing the In recent years, considerable research has been focused on

temporal contextual information and adjusting the PNN to adapt cloud classification. A good overview of such efforts is provided
to such changes. Whenever a new set of images arrives, an initialpy Pankiewicz [1]. Various feature extraction approaches have
f'assf'f'cat'on r|1$| first pﬁrformed using the P'(\j'.N updated ”Rﬂtoéhe been examined. The spectral information, which is comprised
ast frame while at the same time, a prediction using Markov : ’ .
chain models is also made based on the classification results ofOf a set oflradlance measurements of CIOl.JdS at dlfferent. b‘?‘nds'
the previous frame. The results of both the old PNN and the Was used in [2], [3]. Textural features, which are often distinct
predictor are then compared. Depending on the outcome, either a and tend to be less sensitive to the effects of atmospheric atten-
supervised or an unsupervised updating scheme is used to updateyation or detector noise, have received more attention in recent
the PNN classifier. Maximum likelihood (ML) criterion is adopted  yagrs \Welclet al. [4] calculated several statistical textural fea-
in both the training and updating schemes. The proposed scheme tures based on gray level co-occurrence matrix (GLCM) while
is examined on both a simulated data set and the Geostationary ; gray -
Operational Environmental Satellite (GOES) 8 satellite cloud Lameietal.[5] used Gabor filters to extract cloud textural fea-
imagery data. These results indicate the improvements in the tures. Several comparative studies of both the spectral and tex-
classification accuracy when the proposed scheme is used. tural features for cloud and other satellite imagery classifica-
Index Terms—Cloud classification, Markov chain models, tions have been conducted by Parikh [6], Gu [7] and Ohanian
maximum likelihood, probabilistic neural networks, temporal [8] and Augusteijin [9] which led to the conclusion that no con-
updating. sistent optimal feature extraction scheme can be devised for this
problem. The other important issue in the literature is the choice
of the appropriate classifier for the cloud classification problem.
) _ ) Both the traditional statistical and neural network classifiers
S:TELL'TE imagery has provided us with both globalhaye been employed for this application. Simpson and Gobat
nd local views of our planet and the atmosphere. Thgo] [11] used a nested hierarchical partitional clustering algo-
is sending back five spectral channel images of the earthigiapel clusters as cloudy or cloud free classes. Welch [4] used
intervals as short as 1 min. These images generally captyjar discrimination techniques while Let al. [12] tested a
promlnent_changes of _clouds and the earth. 'I_'radmonally, th%ﬁ?ee-layer back-propagation neural network (BPNN). A Prob-
data are inspected visually by meteorologists to determiggijistic neural network (PNN) was also examined by Bankert
cloud types and a wide range of significant weather pattergg| [13]. In [14], these three classifiers were benchmarked for
such as fronts, cyclones and thunderstorms. Owing to the hygg polar cloud and surface classification. The results showed
volume of data (25 GB per GOES 8 satellite) received evefijat BPNN-based solution achieves the highest classification ac-
day, ma_nual interpretation qf all of_these images becomeg;@acy, while PNN falls behind within a very small accuracy
very tedious and sometimes impractical task. Consequently, figasure but requires much less training time compared to the
potential of the satellite imagery may not be fully exploitedgpNN-based solution. Owing to the fact that in most of the sit-
uations the truth maps of clouds and background areas may not
Manuscript received October 11, 1997; revised August 3, 1998 and June _ki)ﬁ aVa”?b'e or reliable, and further a Iarge VOIu_me of satellite
1999. This work was supported by the Department of Defense under the Cimtages is generally encountered, an unsupervised neural net-
wract DAAHO4 94 G0420. =~ . . Jvork solution was also exploited in [15]. In spite of the previous
B. Tian and M. R. Azimi-Sadjadi are with the Department of Electrica d . h efforts in thi t tic cloud cl
Engineering, Colorado State University, Fort Collins, CO 80523 (e—ma@_n_ On'gomg researc e_ ortsinthis area, au qma IC C.OL_J clas-
azimi@engr.colostate.edu). sification schemes are still far from being practical. This is due,
T. H. Vonder Haar and D. Reinke are with the Cooperative Institute for R?nainly to the fact that the characteristics of clouds are highly
search in the Atmosphere (CIRA), Colorado State University, Fort Collins, CO__._°' - . .
80523. variable and dn‘f_lcult to define. Morepver, most of the stud|gs
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at a certain time of the day (generally noon time). Only a fesifier and the predictor, either a supervised or an unsupervised

studies considered processing a series of cloud images, wHeegning scheme is used to update the PNN. The well-known

the temporal variation of the data must be taken into accountexpectation-Maximization (EM) method, which can implement
The temporal factor is extremely important in satellite cloudoth the supervised and unsupervised learning into one proce-

imagery classification and other remote sensing applicatiomiire, is employed for the updating process. The proposed tem-

Generally speaking, there are two kinds of the temporal fageral updating scheme can also be applied to a number of other

tors. The first one is the temporal contextual information (sholithportant applications where spatial-temporal classification of

term). Since clouds and background areas are unlikely to maveequence of images is needed.

or change significantly over short time intervals (one hour), The organization of this paper is as follows. A brief review

there is a strong correlation between two consecutive imageofithe PNN is given in Section Il. In Section Ill, the proposed

is widely known in remote sensing that proper utilization of thi,emporal updating scheme for PNN is discussed. Experimental

temporal contextual information can help to improve the classiesults on both the simulated data and GOES 8 satellite data are

fication accuracy [16]. A number of temporal contextual-basg@esented in Section IV. Section V provides the conclusion and

classifiers have been proposed such as cascade classifier fofihments.

and stochastic model based schemes [18]. The second type of

temporal factor that must be considered corresponds to longer Il. PROBABILISTIC NEURAL NETWORK (PNN)

term temporal changes. As time elapses, certain types of CIOUdE’NN . ised | network that is widel di
will “look” different in the visible channel due to changes in the IS a supervised neural network that IS widely used in

sun angle. At the same time, the ground and low level cIouH%e area of pattern_ _recognition, nonlinear mapping, a_nd estima-
will be heated during the daytime and cooled at night produciﬁ! n of the probablhty of class membership "".f?d I|_keI|hood ra-
textural and radiative changes in the infrared (IR) channel. All # s [20]. Itis closely_ related t.o. Bayes _cIaSS|f|gat|on rule anq
these changes will be reflected in the satellite imagery and he Zen nonparametric probability density function (PDF) esti-
affect the feature vectors. Although these variations may not B@Uon ?heory [2_1]' . .

very prominent in short term, they can accumulate over time_.ConSIder an |r_1put feature vector wherez is ad-dlmen-
Thus, a fixed neural network may not be able to deal with a S@pnal vector which I_o_elongs to one of tike classesg;, L=
guence of images obtained at different time of the day. There grg™ " " K. A classifier can be reggrded as a mappioy,
basically three broad categories of solutions to alleviate theSe le1, ez, -+, exc} that classifies the_ given pattemn
problems caused by temporal changes. The first category ofé ClassC(z). Suppo§e that the clggs conditional distribution,
proaches attempts to find the features that are somewhat in ﬁjci)’ and the_a_ prion _class prob_a_b|I|_t3P(c7;) are known, then
sitive to temporal changes. However, this itself is a difficult tas e pest_ classifier which can minimize t_he def'_”‘?d cost func-
The second class of solutions introduces the temporal factoffy’ 'S given by the fundgmenta} Ba}yesyan dgc_|3|on rule [2.2]'
the neural network classifier. For example, the time at which t en the 0-1 co;t function, which implies minimum classifi-
image is obtained can be used as an input parameter to the clacsastfgn error rate, IS adopted, the. Baygs classifier becomes the
fier. One can also design a number of neural networks that chrximuma posterior(MAP) classifier, i.e.,

respond to different times and seasons. However, one obvious
drawback for these solutions is that a substantial amount of data
must be included in the training set in order to accurately rep-
resent the trend of all possible temporal changes. Moreover, th®©ne main concern when implementing the above optimal
useful temporal context information is neglected. The third claBsyesian classifier is to estimate the class-conditional proba-
of solutions involves the design of a neural network classifidility density functionp(z|c;) and thea priori class distribution

that can update itself to accommodate the temporal changes. PYe;) from the training data set and then use the resultant
like the global classification schemes that use AVHRR, this tysstimates as if they were the true values. Generallya thgori

of classifier is primarily designed to work in a specific regionatlass distribution is highly dependent on the specific task and
area where there are high time interval (geostationary) data asigould be decided by the physical knowledge of the problem. It
so far, only during daylight hours when both visible and IR daia often assumed to be uniformly distributed when no physical
are available. The idea behind this approach is to identify theowledge is available. For the sake of convenience, uniform
changes and then make suitable adjustments to the neural dettribution assumption fo(¢;) is adopted here and thus
work classifier. The main difficulty in this updating process ienly the estimation of class-conditional probability density will
that “truth maps” are not available. This problem is addressedhie discussed in the sequel. However, all the neural network
this paper by developing a novel temporally adaptive neural netructures and training schemes proposed later can easily be
work-based cloud classification scheme exploiting the tempogaitended to accommodate the situations where the a prior class
contextual information. A PNN is used as the classifier due to itstribution is not uniform.

good generalization ability and fast learning capability, which There are basically two categories of schemes for the
are crucial for on-line updating [19]. A Markov chain-based preraditional density estimationparametric approaches which
dictor is also designed, which makes the initial guess basedmndel the class-conditional densities as multivariate Gaussian
the temporal contextual information. The results of the PNMNnd then estimate the necessary parameters from the training
updated to the last frame, and the predictor results are then calata set; and th@onparametricdensity estimation. In [23],
pared. Depending on the match between the results of the claarzen proved thap(z|c;)’'s can be estimated from all the

C(x) = argmax P(¢;)p(z|c;) 1=1,2,---, K (1)

Ci
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From the above analysis, the training of the PNN is very
straightforward. For each new training samgi®elonging to
classc;, the training process adds a new neuron inithgpool
of the pattern layer, with the weight vector whickeisAlthough,
this noniterative training procedure is very fast, a very large
network may be formed since every training pattern needs to
be stored. This leads to extensive storage cost and computation
time during the testing phase.

Fig. 1. Structure of probabilistic neural network. One technique for improving the PNN is to reduce the

number of neurons, i.e., use fewer kernels but place them at the

optimal places. Several schemes using Kohonen and learning
tor quantization (LVQ) have been proposed for clustering

the training samples [24]. In [25], [26], Stredt al. improved

the PNN by using finite Gaussian mixture models. This neural

Input Layer

Pattern Layer ()

Summation Layer

samples in the training set which belong to the clags®When
a Gaussian kernel function is adopted, the Parzen probabi
density function estimator can be represented by [21]

1 Ni network structure is adopted in this paper and briefly described
p(yle) = N 2m) @254 Z below.
¢ i=1 Foranyclass;, : = 1, ---, K, suppose the class conditional
(y B xw)T (y B x@) distribution is modeled approximately by a Gaussian mixture,
v v ie.,
exp 552 (2)
where '1"|cl Z szpjz y Mjis E]z) (4)
N, isthe number of samples in the training set that belong
to classc;, where M; is the number of Gaussian components in class
xz(j) represents thgth sample belonging to class, andw,;’'s are the weights of the components which satisfy the
d is the input vector dimension and is called th@OﬂStralnE =1 T = 1, pji(x; pji, Lji) denotes the multi-
“smoothing factor.” variate Gau55|an density function of tjth component in class

The general PNN structure, which was proposed by Spechtcin Further, we have
[21], is a direct implementation of the above PDF estimator and
Bayesian decision rule. It consists of three feed-forward Iayerg?ji(z% fjis Xiji)

input layer, pattern layer, and summation layer [21] which are  _ 1 exp 1 (x DS & — )
shown in Fig. 1. The input layer accepts the feature vectorsand ~ (27)4/2|3,;]1/2 2 Hii Hii
supplies them to all of the neurons in the pattern layer. The pat- (5)

tern layer consists ak pools of pattern neurons corresponding
to K classes. In each poal, there areN; number of pattern wherey;; andX;; are the mean vector and covariance matrix
neurons. For any input feature vectgrthe output of each pat- of the jth Gaussian component for clags respectively. The

tern neuron is given by Gaussian mixture model described in (4) and (5) can also be
' easily mapped to the PNN structure. For fttepool in the pat-
f(y; wE’), a) tern layer, onlyM; neurons are needed. The weight set asso-
ciated with each pattern neuron{ig;;, £,;},4 = 1, ---, K,
1 (y w(’)) (y w(’)) j = 1,---, M;, and the input—output relation is specified by
= (2@70(1 exp [ — 992 3) (5). In the summation layer, the weight frgith neuron in pool

¢ of pattern layer to théth neuron in the summation layer;ig; .

By configuring the PNN in this way, the output of the PNN will
wherew(f) is the weight vector of thgth neuron in théth pool, be the same as the Gaussian mixture model output given by (4)
and the nonlinear functioyfi(-) represents the activation func-and (5). Since generally/; is much smaller than the number of
tion of the neurons. There are totally neurons in the sum- training samples that belong to classV;, the pattern layer of
mation layer where théth neuron;i = 1, ---, K, forms the the PNN is therefore substantially simplified from its original
weighed sum of all the outputs from tki pool in the pattern version. The price paid for this simplification is the elimination
layer. The weights are determined by the decision cost functiohthe noniterative training procedure. Instead, the weights of
and thea priori class distribution. For the “0-1" cost functionthe PNN, i.e. the parameter sets of the mixture model for each
and uniforma priori distribution, all the weights arg/N; for class, need to be estimated from the training data set.
theith neuron. Comparing (2) and (3), itis very easy to see thatLet A; = {mj:, f4ji, Eﬂ} ", denote the parameter set used
the output of théth summation neuron in the PNN is simply theto describe the mixture model of clagsandA = {\;} £, de-
estimated class-conditional PDF for cla:s,SNhenw D= :cg 9. note the whole parameter space for the PNN. There are several
Furthermore, the PNN becomes the Bayesian classifier in (1pilethods available that can be used to estimatéwe assume
the classification decision is made by simply comparing the ouhat the parameters it are unknown fixed quantities, the max-
puts of the summation neurons. imum likelihood (ML) estimation method is a suitable choice.
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Now suppose that the training samples drawn independently « M Step: The new parameter set can be estimated by
from the feature space form the s&t which can be further

separated intd< subsetsX;, i = 1, ---, K, in which all the Z E[z;:(2)| X, A°M]
samples belong to clags The ML estimation of parameter set ro = X (8b)
A is then given by M
Z Z E[an|i('1")|X7 AOM]
K m=1zCX;
A* = arg max xzle;; A 6 o
5 El Il;[(_ plales; 4) © > Elz@)|X, ANz
. - . - Wji = At (8c)
For the computational efficiency, generally we will maximize Z E[Zj|i(1')|X7 Aold]
the equivalent log-likelihood, i.e., 2CX;
X and
A* = argmax Z Z log[p(x|c;; A)] Z E[zj|i(z)|X, AM] (& = pji)(® = pgi)t
A i=1 x€X; E” _ zCX;
K > E[z(=)| X, Acv]
= argmax Z Z log[p(x|ci; A:)] 7) zEX;
AL zex; (8d)

The last step in (7) is arrived at based upon the assumption ]k convergence property of this two-step iterative procedure is
the conditional probability of clasg is solely decided by the proven in [27]. Although the EM scheme may also end up with a
parameter set of that clasg,and not by the parameter set of thg,ca| minimum, like the gradient descent based scheme, it gen-
other classes. The maximization of the log-likelihood functiogyly converges much faster. There is one important observation
ca_n _be done gsmg a gradient descent scheme. .Howeve.r, q Yol (8a)—(8d): the estimation for parameter set of class
efficient way is to use the well-known expectation-maximiza;ny dependent on the training samples in this class, i.e, the opti-
tion (EM) approach, which was proposed by several researchgfis ation process can be solved separately for each class without
including Dempster [27]. The EM approach can help to achieygnsidering the effect of the others. This is especially suitable
the maX|mum-I|keI_|hood estimation via iterative computatiogy, the cloud classification application since a new cloud type
when th_e observgtlon_s are viewed as incomplete data. There ajg easily be added to the system without affecting the other
two major steps in this approach: the expectatiBhstep and |asses. Moreover, in the updating process, we have the choice
maximization M) step. Thek step extends the likelihood func- ¢ o1y updating those classes that are affected by the temporal
tion to the unobserved variables, then computes an expectaiifnges. Another benefit of this property is the reduced training
with respect to them using the current estimate of the paramef{e que to the fact that each class can be trained separately, thus
set. In theM step, the new parameter set is obtained by Maxsquiring a small number of neurons and training samples. On
imizing the resultant expec_tauon function. These tvyo steps afR other hand, the price one pays for this property is that the
iterated until convergence is reached. The reader is referreq fQssification accuracy is dependent on the real distribution of
[27] for the detailed description on the EM algorithm. For thg,e feature space. If the Gaussian mixture model is a good as-
ML training of PNN, it is shown [26] that the parameter set cag,mption, the classifier will achieve high accuracy. Otherwise,
be estimated iteratively using the followidgand M steps:  he trained PNN may not be optimal in the sense of minimum

* I Step classification error. Although the number of Gaussian compo-
nents can be increased so that the mixture model can be approx-
£ [Zjlvi(iﬂ) |X7 AOM] imated to any distribution (it becomes a Parzen window PDF es-
pji(®; p§i, 254) 754 timation when the number of components is equal to the number
T M of training samples), the computational cost may become unac-
Z D (g;; pold 2;#}) mrold ceptable. The number of Gaussian components is generally de-
m=1 cided experimentally.

i:]-v"'va andj:lv"'vMi (83)

I1l. TEMPORAL UPDATING OF THE PROBABILISTIC NEURAL

where z;;(x) is a random variable indicating which NETWORK (PNN)

Gaussian component generates the observation patterno. h ) i d using EM. the PNN
For a sampler belonging to class;, variablez;;(z) is nce the parameter set is estimated using , the can

defined by be applied to the satellite cloud image classification problem
[29]. However, the temporal factor must be taken into account

1, if featurez comes fromjth Gaussian when processing a sequence of satellite images. Considering

zj1i(z) = component in class; two satellite images of the same area but obtained at different

times, three kinds of changes are generally observed in these im-
ages. The first one is the spatial movement of certain clouds that
which is called unobserved variable in the EM approaatan be mainly due to wind effects. This change can be modeled
[27], [28]. by a Markov process. The second type of variation is the class

0, otherwise
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Ir- the PNN will be used to classify the image again and generate the
. _ - final result for this framex. This process will be repeated when-
Classification Prediction ever a new frame has arrived. In the following sub-section, both
result of frame the prediction process and the PNN updating schemes will be de-
n-1,n-2, etc Comparison scribed in detail.
PNN /(E—_’ Classification A. Pred'Ct'(?n. o . . . .
> Classifier o Re:“'t The prediction block in Fig. 2 is designed to provide an ini-
FNew | | e . tial guess of the class of the current data based on the previous
Weights l-:f-seei  Blocks | classification results. Its feasibility lies in the fact that there is
PNN < P with rich temporal contextual information between adjacent frames.
> Updating |_ w;‘;{:ﬂ'c‘ In [16], f[he contextual information is classified into two main
Scheme T-él-c;t;l;é“wit-l{": categories: “class dependent” and “correllatlon-based.," both of
! Pseudo-Truth which exist spatially and temporally. The first category includes

--------------- all the information on class distribution. For example, certain
positions in the image tend to belong to the same class in the ad-
Fig. 2. Block diagram of the proposed temporal updating scheme. jacent frame (tempora| class dependency Context). In the mean-
time, most of the classes are likely to cover arelatively large area

transition, e.g., certain clouds may be generated, terminatedbPne frame instead of appearing in the isolated blocks (spa-
evolve to other classes. Although these variations commoiiy! class dependency context). There will be arich class depen-
occur in sequences of satellite cloud images, they will not usgency context in satellite imagery series as long as the time in-
ally affect the performance of the classifier unless a new clasd§§val between frames is not too long compared to cloud move-
generated. Nonetheless, if they are modeled properly, they 3@t and changes. This assumption is typically true for most of
even help to improve the classification accuracy. The third tyae GOES imagery data where the time interval between frames
of variation is due to the temporal changes of the features.[relatively shorti.e. 30 minto 1 h. The second kind of contex-
number of factors such as sun angle and ground heating/coofitg! information, i.e., correlation-based, refers to the character-
effects impact the features of clouds and background areas. &lLCS ©f the feature distribution in the adjacent (spatial) block
though the temporal changes of the feature space changesChfdemporal) frames. This information can help to differentiate
not so prevalent over a short time period, say 1/2 or 1 hours, tR@{ween classes. However, this is more difficult to model and
effect accumulates and finally will degrade the performance 8gnerally incurs significant computational cost. Since the initial
the classifier significantly. One solution to this problem is to fre8U€ss is sufficient in the prediction block, only the spatial-tem-
quently update the classifier to accommodate such changesP@f@! class dependency information is used here.
this section, a novel temporal adaptation scheme for the PNN s/ N€ spatial-temporal class contextual information is gener-
proposed. The block diagram of the proposed scheme is shadllf modeled by a Markov chain. In order to simplify the com-
in Fig. 2. putations, 1st order Markoy chain is considered here, |.e,.the
Suppose thatthe cloud images atthe previous time frame, uf§1gss Of the current frame is solely dependent on the previous
framen — 1, are correctly classified and the weights of the neur@n€- Moreover, for a block in the current framewe define its
network have been updated to frame 1. Now, the new frame spatial temporal neighborhood in frame— 1 and assume that_
which includes both visible (ch1) and IR (ch4) channels arrived!!l the temporal class contextual information for that block is
The new images go through the feature extraction stage [29] ifveyed by its spatial-temporal neighborhood in frame1.
will then be applied to the PNN classifier. Ifthe interval between ASSUmex(r; n) denotes the feature vector of black frame
the adjacent frames is short enough (1/2 or 1 h for GOES 8 safelWherer = (k, I) is the location vector of that block in the
lite data), the changes of these features will be minimal, her{f@29€ andc(r; n) refers to the physical class of that block.
the old PNN can still correctly classify most of the data. Due th"€ Spatia-temporal neighborhood of black framen is de-
the rich temporal class contextual information between adjacdifed in framen — 1 asH(r; n) = {z(r + v; n — 1)jv € ¥}
frames, i.e., most of the cloud and background type (land/wat¥fjere is the neighborhood defining set. An example of such
won't move or change abruptly to other types, a prediction c&¢ighborhood is shown in Fig. 3. Furthermot@y (r; n) =
be made based on the classification results of the previous frarfé” +¥; . — 1)[v € W} represents the class label#{r, 7).
The initial classification result of the PNN and the output of the NOW letus assume that the previous frames up to frame
predictor are then compared. Ifthe classification label of animafjgVe correctly been classified, i.€% (r; n) is known for block
block is the same for both the PNN and predictor, then that blo€kFor the current frame, we want to predict the label of block
is classified with a high level of confidence. We refer to this typg 9iven the classification result of its spatial-temporal neigh-
of class information as “pseudo truth.” All the blocks of this kind?0rhood,Cr (r; »). If the a posterioriconditional probability
will form the setX ). On the other hand, all of the blocks for?’(¢(r; ») = ¢i|Cr(r; n)) is known, then the MAP predictor
which the old PNN and the predictor provide different class 1§20 be simply implemented as
bels form the data se’f@. Both data sets¥ ) ar_1dX<2) are &rs n) = argmax P(c(r; n) = ai|Cr(rs n)
used forthe PNN updating even though the learning mechanisms e
are different. After the temporal adjustment, the new weights of i=1,---, K (9)
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) \ Frame n n—1,i.e,¢(r+& n—1)andis notrelated to the label of
L7 . \‘ Block r other blocks in the spatial-temporal neighborhood. Thus,
ST T Ple(r; m)lg. Cia(r: m)) = Plelr: mle(r+& n—1))  (12)
. r : gran?eln; | In fact, the above assumptions imply that the two Markov chains
A : e are statistically independent of each other. Under these assump-
ghborhood r+v

tions, the conditional probability’(c(r; n) = ¢|Cy(r; n)) in

Fig. 3. Example of a temporal neighborhood. In this caseg ¥ = (10) becomes

{(=1, =1), (=1, 0), (=1, 1), (0, =1), (0, 0), (0, 1), (1, =1), (1, 0),

(1. D} P(e(r; n) = ci|Cu(r; n))
= Ple(rin) =cile(r +v;n —1)P(E=v) (13)
Although the idea is quite simple, it is very difficult to find vew

the conditional probabilityP(c(r; n) = ¢;|Cy(r; n)), which and the predictor in (9) can be computed as

specifies the spatial-temporal class dependent context. One

straightforward scheme is to estimate it from the training set. ¢(r; n) = argmax Z P(c(r; n) = cil(r +v; n — 1))
However, this approach will rarely produce meaningful results vew

in practice. This is mainly due to the fact that there are so -P(§=v) (14)

many different combinations o€’y (r; n) and c(r; n) that  pq position and class transition probabilities can be com-

there may not be enough training Saf“p'es- Fgrt_hermore, SONfted from the training data or decided based on the physical
combinations may not even appear in the training set. The

¢ . toasibl ; del for thi diti ickground of the problem. For example, for the case of the
ore, it is more feasible to specify a model for this condition patial-temporal neighborhood in Fig. 3, the spatial transition

probability based on the physical background of the proble obability can take on the following values:
We assume that there are two underlying Markov chains. The '

first one describes the spatial movement in the image. For t (€ —v) = 0.2, forv=(0,0)
object in blockr in the current frame may come from any block 710, forwe {(0, £1), (£1, 0), (£1, £1)}
in its spatial-temporal neighborhood in the previous frame. A (15)

random vectok is defined to represent this spatial movement,

i.e., the object in block + &, £ € U in framen — 1 will move  Since the objects are generally not likely to change positions in
into blockr in framen. On the other hand, the second Markowrdjacent frames, a relatively large position transition probability
chain describes the possible class change of that object. Theiven to this situation, i.e. far = (0, 0). The class transition
class transition Markov chain is needed otherwise the currdgnipbability can be heuristically specified in a similar way, i.e.,
block will always be one of the types appeared in its spati@taining the same class has a higher probability, while the tran-
temporal neighborhood, which is not the case in real situatiorsétion probability to another class is much lower. This kind of
Applying this model and using total probability, we can write distribution can be represented by

«, if ¢; =¢;
P(c(r; n) = ci|Cr(r; n)) Plc(r;n) =cgle(r+v;n—1)=¢)=¢ 1 -« otherwise
=3 Plelr; n) = i, € = 0[Cu(r; n)) -1 |
vew (16)
_ Z Ple(rin) = cil€ = v, Ci(rs n) whereK is the total number of classes ands a user defined
ot ' ! A number between 0 and 1 that satisties (1—«)/(K—1). Itis
- P(€ = v|Ci(r; n) (10) proved in Appendix B that the value afis not important for the

final prediction result as long as the class transition probability

o . takes this form. Furthermore, the predictor in (16) is equivalent
For the sake of simplification, two assumptions are made as f?i'a simpler form

lows:
« For the spatial transition Markov chain, we assume that &(r; n) = argmax Y §(c(r+v; n—1), ¢;)P(€ =v) (17)
é vCW¥
P =v|Cy(r;n))=P€=v) (11) where
. . .y N . Sle _ 1l a=c
i.e., the spatial transition probability is only decided by (ci, a) = 0, otherwise,

the relative position of that block in the spatial-temporal

neighborhood and is independent of the class label in itssimilar to the Kronecker delta function.

spatial-temporal neighborhood. It is clear that accurate prediction can not be achieved only
» When the content of block + «i in framen — 1 moves based on the temporal contextual information. However, if the

to the blockr of the current frame, its class may als@utput of the PNN achieved the same classification result for the

change. It is reasonable to assume that such class trasame block, then a much higher confidence can be assured. All

tionis solely dependent on the class of that object in frantlee blocks that have the same labels from both the predictor and



TIAN et al: TEMPORAL UPDATING SCHEME FOR PROBABILISTIC NN 909

the PNN updated to frame — 1 form the data seX (") while generally perform at least as well, on this data set, as the pre-
the others form the séf (2. In the following section, these two vious one. Thus, the stability requirement is likely to be satis-

data sets will be used to update the PNN. fied. However, since th& (U set is only a subset of the whole
. feature sefX and their distributions are not generally the same,
B. PNN Temporal Updating Scheme the resultant neural network may not be able to reflect the dis-

The updating process of PNN is a type of “on-line training.tribution of the whole feature spac&], hence degrading the
There are basically two requirements for the updating procegissification performance.
First, the updating process must be stable, i.e., the updated) Cost Function 3: Combination of Supervised and Unsu-
PNN must maintain good classification capability for thospervised Learning:
previously established categories. Second, the updating must
be plastic to accommodate temporal changes of the data and3(X; A) = Z log(p(z; A

new class generation. Note that the only truth available for zEX
comparison in this updating process is the “pseudo truth” — Z log(p(z; A)) + Z log(p(z; A))
obtained by utilizing the temporal contextual information and s X (D zEX(2)
the old classifier’s results. However, this class information will
be used as if it is the truth. K
Assume that the training samples drawn independently from - Z Z log(p(=]ci; Ai))
the current feature space form the training Zewvhich is ba- = eex(V
sically the set of features for frame This training set can be + Z log(p(z; A)) (20)

further separated into two set&:") and X, whereX® in-
cludes all of the samples for which the class label is assumed
to be known, while all the samples of unknown types belong fichis cost function is a combination of the two aforementioned
X@_ Moreover, IetXi(l), i = 1,---, K, denote a subset of cost functions. All the samples and available class information
X @ in which all the samples are known to belonggo The are used. Maximizing the first part corresponds to the super-
neural network structure is the same as that discussed in Sédsed learning process which can help to keep the stability of
tion Il and does not change in the updating process. The gtfag training, while maximizing the second part leads to unsu-
is to re-estimate the parameter set for PNN so that it can m@@yvised learning which can help to form a more accurate rep-
accurately represent the distribution of the temporally changegsentation of the distribution for the whole feature space, thus
feature space. Maximum likelihood (ML) criterion is adopted iproviding the plasticity needed for this problem. Fortunately,
this PNN updating process. this is still a maximum likelihood estimation problem and the
Three types of cost functions are considered based on whethdf approach can be used to maximize this cost function as a
or not the pseudo truth information and the whole data set avole. This approach is similar, in principle, to thatin [28]. The
used in the training process: detail derivation to maximize this cost function is given in Ap-
1) Cost Function 1: Exclusively Unsupervised Training: pendix A. It can be proven that the local maxima can be achieved
by the iterative use of the following 2-steps until convergence is

zcX(2)

(X5 0) Z log(p reached. The parameter set of the old PNN can be used as the
zeX p initial values.
+$
EIS =1
€x .EI|:2,’J|Z(.’I,')|)(7 AOld]
. ,,0old old old
= > log lz (wlei; A)P(ci) (18) = pii (@ 157 25 ) wherez € X
xzCX i=1 )
In this cost function, no class information from training sam- Z D (T3 pignts Eind) wond
ples was used. The training result is completely decided upon m=l .
by the distribution of the features, which may not guarantee a (=1 Koandj=1, -, M, (21a)

good classifier and the stability requirement. As a result, this £[ z;:(z)|X, A

cost function is not a suitable choice. pﬂ( P led 23#71) ;)71(1
2) Cost Function 2: Exclusively Supervised Training: = K L
old old old
FQ X A Z IOg Z Z p"’k S P Ernk) Tk
k=1 m=1
zcX (1)
p wherez ¢ X® (21b)
=Y > log(p(zlei; i) (19)

wherez,;(x) andz;;(x) are random variables indicating
which Gaussian component generates the observation pat-
In this cost function, only those samples in the 3&&) are tern. However, they are defined on a different sgt;
used, for which the class of samples are known. This super- is defined on theX(!) set where the class label of the
vised training will lead to an updated neural network which will input is known whilez,; is defined on thex® set where

i=1 gex®
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un sup

neither class nor mixture component information is avaikand, .. ;; is the result of the unsupervised learning on the
able. Please refer to Appendix A for further information.data setX (2. Moreover,
» M step[see (21c)—(21e), shown at the bottom of the page.]

Several issues must be carefully considered in the implemen- Z E[z:(2)| X, A°M]

tation of this scheme. The main idea of this updating schemediﬁs zeX®

to re-estimate the parameter set of the PNN so that it can move=

accurately represent the changed space. This, generally requires Z Ej:(=)| X, AM] + Z Elzji(2)| X, Ack]

the availability of substantial amount of data, which may notbe =~ zex{" ZEX

possible in many real-life applications. This data poverty not o (22_0)_

only prevents the accurate estimation of the parameters for cgfP{rols the contributions of the two types of training.

tain Gaussian component but also makes it difficult to updat¥otice that the terms . Elzji(x)|X, A°M] and

the proportional weights among different components. Consi¥-,, - x ) E[z;i:(z)| X, A°M] represent the expected number of

ering these issues, we choose to update only those Gaussamples inX(*) and X (® sets that belonging to component

components which have enough sampleXift) set. Further- in classe;. Thus, the combination factgr is totally decided by

more, only the mean vectors are updated, while the covarianbe newly arrived data set. Also, the result in (22a) implies that

matrices and weights are assumed to be unchanged over ttheesolutions to (20) can be expressed in terms of the weighted

since generally accurate estimation of these variables requicesnbination of the supervised and unsupervised solutions

larger data set. Another important issue in updating is to babhile the weights$ and (L — 3) are determined by number and

ance the contributions between the unsupervised and supervidisttibution of the samples in the sets®f!) and X (?. For the

training. Let us rewrite (21d) as shown in (22a) where supervised learning to dominate the final results, i.e., satisfy
the stability requirement, we define a constant fagigr, and
require that the combination fact6r> Suin.

Z E[zjli(:r)|X7 Aold] T Based on the above discussion, we improved the updating
sex® scheme by adding some necessary inspection steps. The new
1 = —c scheme is given as follows:
Z EI|:2,’J|Z(.’I,')|)(7 AOld] l) The .
parameter set updated to the last frame is used as the
zex( initial value. For thejth Gaussian component in class
and i=1, -, Kandj=1,---, M
Z E|zi(z)| X, AM] z 2) Use (21a)and (b) to calculaiz;;(z)| X, A°"] (forz €
uun sup _ xcX(2) (22b) X(l)) andE[Zj-i(.’L'”X,.AOld] (fOI’ T € X(2)) .
I Z E[z;:(z)| X, AoM] 3) Check to see if there is enough number of samples avail-
X (® able for updating the mean of this Gaussian component.

If 3, v Elzji(®)] X, A% < Ni, where N, is
called the “updating threshold,” then no updating will be
It can be shown that if we only perform supervised learning on  performed on this Gaussian component because of data
the X (1) set, then the updated mean vector will58". On the poverty. Otherwise go to the next step.

Z E[zj:(z)| X, A°M] + Z E[zi(=)| X, A%]

sex(® ZCX(®
T = X © (210)
M;
Z Z E[Zm|i('1")|X7 AOM] + Z E[Zmi(""'”Xv AOld]
m=1 I€X7_(l) zeX(2)
Z E[z:(z)| X, Az + Z E|z(z)| X, AM] z
zcx zEX(2) (214)
Hji =
’ 37 Elz@)]X, A% + 3 Elzji(@)] X, AcM]
wex® 2EX (@)
> E[zu@)]X, AM) (@ — )@ — )t + Y Elzu@)|X, AN (5 — i) (@ — i)’
zeXx® e X (2)
Eﬁ, = . (216)

> E[Zy(@)|X, AN + > E[Z(x)| X, AY]
zcx® 2CX(@)
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4) Calculate the supervised and unsupervised learning re- y
sults, ;" andg; ™, as well as combination factg. 1 1
5) If B < Buin, let 8 = Buin. This step ensures that the )
. =P = . : RUIRRR
supervised training will play more important role in the \;\\\\
updating than that of the unsupervised learning. 0 0 3’ ~ “1 > X

6) Updating: Ify°_ .y Elz;;(x)| X, A% > No, (N2 isa
pre-defined factor called as “sufficient threshold”), whiclrig. 4. Data seD for testing.
indicates that there are enough samples for accurate esti-

mation, then we choose the newly estimated parameter to . .
replace the old one, i.e., A.” Experiment 1: Simulated Data Set

In this experiment, the database consists of only two classes.
[ji = /3@?}) +(1— /3)u;;1 sup The data for these classes are uniformly distributec_i in the 2-D
space [0, 0.3Jx [0, 1] and [0.3, 1]x [0, 1], respectively, as
. . . shown in Fig. 4. These data sets have several unique features.
Otherwise, the newly est|m§\ted_vall_1e may not be re“a_blf—(?rst, the distribution is not Gaussian thus posing a big challenge
hence we choose to combm_e it with the correspond|qgr the proposed method which is based upon Gaussian mix-
parameter of the last frame, i.e. ture models. Second, the simple unsupervised-based training
. scheme is not likely to achieve good results since the distribu-
pji =y + 1=y Bt + (1= By ™) tion is uniform and the areas of the two classes are not the same.
The PNN described in Section Il was adopted and only one
Whereu;lf;i is the initial value (the parameters of the lasGaussian component (worst case scenario) was assigned to each
frame) and the factoy satisfies0 < v < 1 and can be class. A total of 400 samples for each class were used in the

calculated by training phase. The classification error rate of the resultant PNN
was 1.38%. This data sel), was then exposed to four kinds
Z E[Zjli($)|X7 Aold] — N of temporal change.”fi, =1, 4_, _and four new set.«z_)i
“ were generated by;: D — D;. Specifically, they are defined
y= zeX, as follows:
No =M 1) Data setD; = 11(D), whereTy: (z°', 4°) ¢ D —

_— . (@M 15wy, y ) € Dy
The above steps are performed iteratively until convergence IS2) Data setD, = Ty(D), whereTy: (z°1, yo4) € D —
reached. (221 % 0.8 + wy, 44 + w) € Dy
3) Data setD; = T3(D), whereTs: (z°4, 4°) € D —
IV. EXPERIMENTAL RESULTS (z°M 4 0.1 + wi, ¥ + wy) € Dy
In this section, two experiments were designed to examine4) Data setD, = Ty(D), whereTy: (z°', y°) € D —
the effectiveness of the proposed temporal updating scheme. In ~ (#¢ = 0.1 + w1, ¥ 4+ w») € D
the first case, a simulated data set was used. In spite of its simherew; andw, are Gaussian white noise with zero mean and
plicity, this data set can help to demonstrate the properties of $tandard deviation 0.05. Data 98t was designed to simulate
proposed scheme very well. The second test was done on tiwe expansion trend of the features while data/3etvas gen-
sequences of GOES-8 satellite images. A cloud classificatierated to represent the shrinkage case. Moredverand D,
system was implemented and its performance was examineddnrespond to the case where the changes are translational. All

this case. these four kinds of changes are very common.
Z E[zj|i(z)|X, A°M] Z E[zj|i(x)|X, AM] g
EEXZ.(1> EEXZ.(1>
Hji =
TN Blgp@)]X AN ¢ Y Eli@)]X, AN Y E[z(e)|X, Ack]
zex(V 2CX(2) zex ("
> E[zi(@)|X, AM] > E[zi@)|X, AM] z
zeX(?) zeX @)
Yo Elzp@|X, A+ Y Elz@)| X, AN YT Elz(@)] X, AN
.'1:€X7.(1> e X (2) zeX (2

= B+ (1= B ™ (22a)
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TABLE |
THE CLASSIFICATION ERROR RATES (%) OF
THE THREE PNN

Ideal PNN | Non-updated PNN | Updated PNN
Data set D1 3.0 124 3.75
Data set D2 5.25 7.75 6.63
Data set D3 4.13 11.25 5.50
Data set D4 4.13 8.38 6.25

The proposed temporal adaptation scheme was then applied
to these four new data sets. Since there is no complicated spatial
temporal context for this example, for a sample= (z, y)
in the current data seb;, ¢ = 1, ---, 4, its spatial-temporal
neighborhood is defined to include only one sampl®inwvhich
is determined by the inverse mappingof i.e.Ti_l(z). After
the updating process, the new PNN is used to re-classify the
temporally changed data set and the resultant classification error
rates are given in Table I.

For the sake of comparison, the accuracies for two other
schemes are also provided. The first one corresponds to the
results of the PNN trained on the new data set. The second
one corresponds to the nonupdated case where the PNN that
was trained on the old data s€, was used. From Table |,
it can be found that the performance of the nonupdated PNN
degraded significantly when temporal changes are present. The
classification error rate jumped from 3-5% for the ideal case to
more than 7.7%. After temporal updating, the PNN performed
much better. For the data séf; and D3, the improvement
on the accuracy rate for the updated PNN is around 6-8%
while for the data seb, and ., this is around 1.4—2.1%. It is Fig.5. GOES 8 satellite images obtained in May 1st, 1995 at time 15:45 UTC.
interesting to mention that the updating improvement varies for
each data set. There are several factors that contribute to {Risthis study. Figs. 5 and 6 show the image pair (visible and
phenomenon, such as the number of samples in the updatigobtained at the beginning, 15:45 UTC and at the end, 20:45
sets XM and X®, and the parameter set of the old PNNUTC, respectively, for the sequence collected on May 1st, 1995.
but perhaps the most important one is that the unsupervisdese images of size 512 512 pixels (spatial resolution of 4
learning plays a different role for each case. For datalet km/pixel) cover the mid-west and most of the eastern part of
and D3, the actual decision boundary is shifted to the rigifie U-S., extending from the Rocky Mountains to the Atlantic
compared to that of the original data st Thus most of the coast. The images cover mountains, plains, lakes and coastal
samples in the seX(® belong to class 1. Owing to the initial aréas where clouds have some specific features that are tied
value of PNN, the unsupervised training &2 will help to 0 topography. Lake Michigan is in the upper right corner and
move the decision boundary to the right, which is the correEforida is located in the lower right, with Gulf of Mexico in the
direction. For the data sdb, and D, the situation is just the lower center of the image. These sequences are of particular
opposite, so the updating results are inferior to the other caggierest because of the presence of a variety of cloud types. For

Overall, the proposed updating scheme worked well on tfgxample, in Fig. 5 one can find thin cirrus in the left middle part,
simulated data set. cirrostratus in the right middle part and low/middle-level clouds

(stratocumulus and altostratus) in the center part as well as
water and land areas. Since ground truth maps are not available
and/or reliable, two meteorologists were asked to identify all

In order to test the proposed temporal updated scheme fioe possible cloud types as well as the background areas based
cloud classification application, a GOES 8 satellite imagen the visual inspection and other related information. This
database was used for this purpose. The GOES 8 satelit@s accomplished with the aid of a computer software package
carries five channel sensors. However, only two channetieveloped solely for this purpose. Approximately 50% of each
namely visible (channel 1) and IR (channel 4), were used siniceage was analyzed and classified into ten cloud/background
most of the other meteorological satellites only carry these twtasses which are: Cold Land (CInd), Land (Lnd), Water (Wtr),
channels. Two image series acquired on May 1st and 5th, 19%satus (St), Cumulus (Cu), Altostratus (As), Stratocumulus
between 15:45-20:45 UTGat one hour interval, were chosen(Sc), Cirrus, and CirroStratus (Cs).

B. Experiment 2: GOES 8 Satellite Image Classification
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training set while the rest formed the test set. The Cirrus type
has the largest number of training samples (2629) while the Cold
Water type has the least number of samples (46). The detailed
information on the training of this PNN including the number
of training samples for each class and the performance evalua-
tion is described in [29]. Fig. 7(a) and (b) show the classification
results of the PNN on the image pairs collected at 15:45 UTC,
May 1st (shown in Fig. 5) and the areas labeled by the meteorol-
ogists, respectively. Visual inspection of the color-coded image
in Fig. 7(a) indicates that different cloud/background areas have
been well-separated and the results agree very well with the me-
teorologist labeling in Fig. 7(b). However, when this PNN was
applied to the images obtained at 20:45 UTC of the same day,
the results were very poor. The color-coded image in Fig. 8(a)
shows the result while the corresponding labeled image (mete-
orologists) is shown in Fig. 8(b). Comparing to the results in
Fig. 7(a), many of the cloud areas have been incorrectly as-
signed to different classes although the clouds may not change
a lot. The large area of Cumulus cloud over the Gulf of Mexico
(lower center) has been misclassified to a mixture of Cirrus and
Stratocumulus. The Stratocumulus clouds in the upper central
part have been misclassified as Altostratus. In addition, several
other regions have been misclassified into Cirrus type, for ex-
ample, the Stratocumulus clouds in the upper right corner and
the Altocumulus cloud in the central right part. Several factors
may possibly contribute to this poor performance. The training
sets are not large or representative enough for some classes. The
major factor, however, has to do with the temporal changes in
the data. Fig. 9(a) and (b) provide the scatter plots of the orig-
inal images at time 15:45 UTC and 20:45 UTC, May 1st, re-
spectively. They-axis represents the normalized pixel intensity
Fig. 6. GOES 8 satellite images obtained in May 1st, 1995 at 20:45 UTC. iNnthe IR channel that reflects the temperature. Generally, land is
the warmest class at day time in May leading to the largest pixel
The visible and IR images were first partitioned into smaWalue, followed by water, low level clouds, middle level clouds,
blocks of size 8x 8 Corresponding to an area of size 8232 while the cirrus is the coolest class. On the other hand, the values
km. A feature extraction operation was then performed on the®@ the z-axis describe the reflectivity in the visible channel.
blocks to extract pertinent features for classification. Varioldater has the lowest reflectivity (at low sun angles—due to ra-
textural feature extraction schemes for the cloud classificatigition being reflected away from the satellite sensor rather than
application were studied and compared in [29]. These studigattered toward it) giving rise to the smallest value, followed by
indicated that the Singular Value Decomposition (SvDground and then clouds that have a high scattering component.
2-D Wavelet Transform and Gray Level Concurrence Matri&areful comparison of the two scatter plots can easily reveal
(GLCM) textural features achieved almost similar resulthe differences. The most obvious distinction is in the upper left
Nonetheless, since SVD scheme is much less computation&@yner that corresponds to the land areas. Due to the heating ef-
demanding, it was adopted in this study. Using the SVD affcts, this region has expanded to cover a larger area after five
proach, a total of 16 singular values were first extracted, 8 frof@urs. In the mean time, due to sun angle changes, clouds are
every 8x 8 block in each channel. To remove the redundand@t as bright in the visible channel as they were before. There
among these features, a sequential forward feature selec@®@ many pixels whose values exceed 0.5 in the visible channel
process was employed in which the Bhattacharya distar@lel5:45 UTC while very few of them exist at 20:45 UTC (the
is used to measure the class separability. After the featl@#er sun angle causes more energy to be reflected from the
selection process, only 6 features with good discriminatofjoud, and away from the satellite).
ability were chosen for the subsequent classification processIhe proposed temporal adaptation approach was then ap-
These features correspond to the 1st, 3rd, 5th singular valuegligd to this image series. The updating process starts from
the visible channel and the 1st, 3rd and 6th in the IR channéB:45 UTC and happens every hour. The network struc-
For a detail discussion on feature extraction/extraction, th&'e as well as the weights and covariance matrices of the
reader is referred to [29]. Gaussian components are kept unchanged while the mean
The initial PNN was trained on six image pairs obtained froi¥ectors are updated when there are enough samples available
15:45 UTC to 17:45 UTC on both May 1st and May 5th, 1994i.-€., >__ . Elz;;(®)| X, A°] > N]. All the constants
Half of the labeled blocks in these image pairs made up theeded in the training algorithm are decided experimentally.
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Warm Land
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Warm Water
Cold Water
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Cumulus
Altostratus
Citrus
Cirrustratas
Stratocumulus

Fig. 7. (a) Classification results at time 15:45 UTC, May 1st, 1995. (b) Cloud/background classes labeled by meteorologists.

Warm Land
Cold Land
Warm Water
Cold Water
Stratus
Cumulus
Altostratus
Cirrus
Cirrustratus
Stratocumulus

Fig. 8. (a) Classification results of the nonupdated PNN at time 20:45 UTC, May 1st, 1995. (b) Cloud/background classes labeled by meteorologists.

Specifically, the updating threshold; was chosen to be 5 andone category. As a result, it is possible that some blocks in that
the sufficient thresholdvs was set at 10. The combination factoregion may belong to different classes since the labeling is done
S was 0.9 for the background classes and 0.5 for the cloud typkeased upon global information. Also not all the blocks have
This difference onj settings is due to the observation that thbeen labeled and some regions have mixed cloud types hence
unsupervised training tends to degrade the separation betwewking the classification task difficult. Due to all these factors,
land and water classes, so largewvas chosen to reduce thethe accuracy rate may not fully represent the performance of
effect of unsupervised learning. The size of the spatial-tempotla¢ classifier and consequently the visual inspection of the
neighborhood for the predictor was<33 for this example. results would be the best way to evaluate the performance.

Fig. 10 shows the classification result of the image pair ob- The confusion tables for the PNN classifier before and after
tained at time 20:45 UTC, May 1st using the updated PNlhe updating are given in Tables Il and IV, respectively. It was
Comparing with the nonupdating results in Fig. 8(a), significafbund that the overall classification rate increased from 65.8%
improvements can be observed. For example, the classificatiory5.4% after the updating process. Furthermore, the accuracy
errors made by nonupdated PNN on the Cumulus clouds ovate are significantly improved for the Warm Water (WWtr) and
the Mexico Gulf are corrected and most of the clouds in tr@most all the cloud types, namely Cumulus (Cu), Altostratus
upper center area have been classified to the correct Stratq@s), CirroStratus (Cs) and Stratocumlus (Sc) classes, while the
mulus type. Furthermore, the classification accuracy improvaecuracy is not changed for Cold Land (CLnd) type. Warm Land
ments are also observed in both the upper right corner and (#é_nd), Cold Water (CWtr) and Cirrus (Ci) are the three types
Altostratus clouds in the center right part. On the other hantthat the accuracy degrades after the updating. For the Cold Water
for those regions that were not changed, the updated PNN m#&agVtr) class, although 20% accuracy degradation seems a lot,
the same decisions as the nonupdated PNN that demonstridtean easily be explained since it is just caused by one block
the stability of the updating approach. misclassified as the Warm Water (WWtr) type (there are only a

Besides the visual inspections, the classification accuraital of 5labeled blocks available). Similarly, the slight accuracy
rates for both the nonupdated and updated PNN are examirgegradation on the Warm Land (WLnd) class is mainly caused
There are totally nine types of clouds identified in the imagdey two blocks that were wrongly classified, one as Cold Land
pair at 20:45 UTC (Stratus type is missing). The number ¢€Lnd) type. The degradation of accuracy on the Cirrus (Ci)
labeled blocks for each class is given in Table Il. It should bdass, on the other hand, is primarily due to the fact that the re-
mentioned that the way meteorologists label images diffesalt of the nonupdated PNN for this class is seriously biased be-
from that of the neural network classification system, i.ecause of the predominant number of blocks in this class. On the
instead of labeling each block individually, they first try tocontrary, the accuracy improvements for some of the cloud types
identify certain regions and then assign that whole area iraice significant. For example, for the Cumulus (Cu), Altostratus
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Fig. 9. Scatter plots of the cloud images got in May 1st, 1995.

(As) and Stratocumulse (Sc) class, the accuracy rates after th FSTAGsE_E= et S o
' ! e ‘lq b L arm Land
updating go up 42.2%, 20.7% and 45.7%, respectively. These = et ;' il Cold Land
results clearly demonstrate the effectiveness of the proposed up | 4+ % = 'ri_‘ ) - Warm Water
dating scheme. . ' .-_lj:."r'._____l ;._ Ll L . C old Water
The same tests have also been applied to the image sequen | . g . AT Siratus
collected on the May 5th. Very similar results were achieved. ® .".l' Cumulus
Overall the proposed updating-based PNN achieved better an Altostratus
more consistent classification results than those of the nonup .y Cimrus
dated ones. Not only the color-coded results conform very well ® Cirrustratus
Stratocumulus

with the meteorologist’'s labeling, but also the classification
rates were improved. The price paid for this improvement is h
the extra computation cost due to the updating process. The

proppsed scheme was implemented in MATFAB fU””i”Q ONMy. 10. Cloud classification result of the updated PNN at time 20:45 UTC,
Pentium 266 MHz. The CPU time for processing the two imageay 1st.
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TABLE I
NUMBER OF LABELED BLOCKS FOREACH CLASS IN THE IMAGE PAIR OF 20:45 UTC, Mhay 1st, 1995.
Warm | Cold | Warm | Cold | Stratus | Low | Strato- | Alto- | Cirro- | Cirrus
Land | Land | Water | Water | (St) [CumulusiCumulus| Stratus | Stratus | (Ci)
(WLnd)| (CLnd) [(WWT1r) | (CWir) (Cu) (Sc) (As) (Cs)
101 10 84 5 0 102 399 97 158 901
TABLE Il

CONFUSION MATRIX FOR THE NON-UPDATED PNN QLASSIFIER (%). OVERALL CLASSIFICATION RATE IS 65.8%. (THE RESULTS IN EACH ROwW OF THE TABLE
REPRESENT THENEURAL NETWORK CLASSIFICATION ACCURACY FOREACH CLASS DETERMINED BASED ON THERESULTS OFEXPERT LABELING.)

WLnd | CLnd [WWir | CWir St Cu As Ci Cs Sc
WLnd | 86.1 0 0 0 0 0 0 13.9 0 0
CLnd 0 60 0 0 0 10 0 30 0 0
WWir 0 0 81 0 0 0 0 19 0 0
CWir 0 0 0 80 0 0 0 20 0 0
St N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
Cu 3.9 1 2 0 6.9 48 8.8 12.7 0 16.7
As 0 0 0 1 2.1 24.7 53.6 17.5 1
Ci 0.2 0.2 0.3 0 0.2 0.1 0.9 87 10.7 0.3
Cs 0 0 0 0 0 0 0 36.7 63.3 0
Sc 0 0 0 0 4.8 12.3 43.9 13.5 0.5 25.1
TABLE IV

CONFUSIONMATRIX FOR THE UPDATED PNN QLASSIFIER USING SVD FEATURES(%). OVERALL CLASSIFICATION RATE IS 75.4%. (THE RESULTS INEACH Row OF
THE TABLE REPRESENT THENEURAL NETWORK CLASSIFICATION ACCURACY FOREACH CLASS DETERMINED BASED ON THERESULTS OFEXPERT LABELING.)

WLnd [ CLnd {WWtr | CWur St Cu As Ci Cs Sc
WLnd 84.2 1 0 0 0 2 0 12.9 0 0
CLnd 0 60 0 0 0 30 0 10 0 0
WWtr 2.4 0 95.2 0 0 1.2 0 1.2 0 0
CWtr 0 0 20 60 0 20 0 0 0 0
St N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
Cu 3.9 0 2 0 0 90.2 0 3.9 0 1
As 0 0 0 0 0 2.1 45.4 20.6 7.2 24.7
Ci 0.3 0.1 0.4 0 0.2 14 1.9 76 18.6 0.9
Cs 0 0 0 0 0 0 0 234 76.6 0
Sc 0 0 0 0 2 4 20.1 2.3 0.3 71.4

sequences is 943 and 827 s, respectively. Since the nedia inputimage is classified again by the updated PNN. The pro-
network has to be updated three times for each image sequepaeed scheme is examined on both a simulated data set and two
(18:45 to 20:45 UTC), the computational cost is approximatesequences of GOES-8 satellite images, and promising results are
5 min per frame. We expect that the processing time can furttehieved. Future research would involve a more thorough anal-
be reduced when the proposed approach is optimized aysis ofthisscheme.In particular,amongthoseissuesto be studied
implemented using a more efficient computer language and are: how to further overcome possible data poverty problem, how
faster processor. to present the error propagation. Additionally, other on-line up-
dating approaches may be explored.

V. CONCLUSIONS
APPENDIX A
Many meteorological applications would benefit from amgerivaTioN oF THE UPDATING PROCESSUSING EM APPROACH
automated cloud classification system. However, the study ) ) :
of cloud classification is still in its infancy. There are several O the updating process, our goal is to estimate the parameter

factors that contribute to the difficulties in cloud classificatioroet that will maximize the cost function in (20), i.47"" =
These include: high variability of cloud features and lack of ré*& MaXa I3(X; A) where
liable ground truth. Furthermore, when dealing with sequences
of consecutive satellite images, the temporal changes of the K
features in those images must be considered. (X5 A) = Z Z log(p(=ei; Ai))
In this paper, a PNN-based cloud classification system with a =1 | zex®
nove] tempora_l updating capab.ility has beep pr'oposed: Whgn a + Z log(p(z; A)) (A.1)
new image arrives, the system first performs initial classification ex(®

aswell as a prediction based upon the temporal class dependency
context. This information is then used to update the PNN clasBiirect analytical solution for (A.1) is difficult to obtain. Instead,

fier. ML criterionis adopted in the updating process while the EMe will apply the EM approach. The basic idea of the EM al-
algorithm is used to estimate the new parameter set of the PNjdrithm is that the maximization process may be simplified if
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the missing variable is added to the data set. In this applicati@ince bothr;; andz;; are delta type functions, the summations
the missing information is identification of the Gaussian conand log operation can be interchanged in the last step.
ponent that generates the observation pattern. Notice that for th©ne important property of the EM scheme is that the like-
samples in sek () andX (?, the missing information is not the lihood function of the incomplete data s&t in (A.1) can be
same. For a samplein X (1) set belonging to class we can maximized by iterative application of thé and M -steps to the

define a variabler;|;(x) by complete data likelihood functiod; (Y'|A) [25].
1, if featurez comes fromjth Gaussian In the E-Step, we take the expectation of the complete data
component in class likelihood based on current parameter gt and observation
Zili = A.2 i i i oldy j
zj1i (%) 0. otherwise, i=1. ... K and (A.2) setX. This expectation is denoted Igy( A|A°!), i.e.,
jI].,---,MZ‘ Q(A|Aold)

On the other hand, for the samples in 3&&, for which the ._ E(F(Y|A)|X, A%
class information is missing, we can similarly define variable ’

zji(z) by
1, if featurez comes from classand thejth Z Z Z’le ) og(mjipji(®; 1056 %))
@ Gaussian component generates it. =l gex® J
Zii\&) = .
! 0, otherwise, i=1,---, K and
j=1,---, M, A3 + Z 227“ Ylog(mjipji(®; p1ji, 2ji))| X, A
( ) zcX(2) =1 j

All' z;); and z;; form the setZ. The observation feature st

is generally called the incomplete data set while theYset old] 1

{X, Z} is called the complete data set, since the missing in- Z Z EE[ZW(‘”)|X’ A log(mjipsi(@s jir ¥i)
formation has been added to it. We can extend the likelihood "=' zex{V J

function to include the unobserved variable and compute the

Iog—likelihood of the complete data set as + Z ZZE zji(2)| X, A°M]
rzeEX () i=1 j
F(Y|A) = Z > logp(ylei; M)+ > log p(y; A) log(mjipyia; pyis X5)) (A.6)
i=1 CX(U zCX(2)

According to the definition of;}; in (A.2), for the sampler

K M; belonging toX (V) set, we can calculate
= Z Z log sz|i(z)p(z|ci, zji(x) = 1; Ap)
i=1 I:EXZ.(U j=1 _E||:2,’J|Z($C)|)(7 AOld]
( = 1|X; A%
p(zi(®) = 1) _p(= =1 X)) p(z(x) = 15 A8M)
p( . )\old)
K . . ,old old old
Pji (557 Hjis E ) i
53 e[S s@lalenie) = 1) =5 - (A7)
R > s il Sl
m=1
pzi(e) =1) (A-4) Similarly, for the samples from setX @ we can get
Using the Gaussian mixture model in (4), we have E[z(z)|X; A%
(Y|A) = P(zp(z) = 1|X; A9
M; old old old .
_ p“( NJ E ) Ty p(cl)
= Z > log| > zl@msi(ws wyi Sii)mi T K My (A-8)
scx™ j=1 Z Z P (25 1088 B0t ) mokip(er)
K M; k=1m=1
+ > log 2ji(®)pji(®; wji, Xji)mjiP(ei) | 1f we assume that the priori class distributionp(c; ), are uni-
zEX(2) i=1 j=1 formly distributed, then
= Z Yo D #iil) og(mypsi(e; i, $50) Ezji(w)| X5 A%
=l gex® J = P(zj(x) = 1]X; A°)
old old old
_ pji(-'l"; sz ’ E ) jZ
+ Z Z Z 7Jz ) log szpﬂ( y Hgi, Eji)P(ci)) T K M, (A.9)
sexe D> 2 ol i, ) mo

(AS) k=1m=1
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The second step in the EM algorithm is to maximize than equivalent predictor to that in (B.1). Substituting (B.3) into
expectation functior(A|A°)with respect to the parameter(B.2), we get

set A. This M-step can be done by taking the derivative of

Q(A|A°)and setting it to zero. The optimal parameters will — P(c(r; n) = ¢;|Cu(r; n))

_be obtained _by solving th_e resultant equations. This process _ Z Ple(r; n) = ¢le(r +v; n — 1)) P(€ = v)
is rather straightforward, since the parameters, 1, 2,;} oyt
are decoupled from each other after taking the derivative. The
Langrange multiplier is used to solve for parameter in = Z P =wv) {aé(C(TJrv; n—1), ¢;)
order to satisfy the constraift}”; x;; = 1. The detailed vC
mathematics is omitted here and the final result is given in -«
1-6 N -1 i B.4
(A.10)~(A.12) where = 1, ---, K andj = 1, ---, M,. g ruin—1) a) (B-4)
APPENDIX B where
PROOF OF(17) FOR TEMPORAL PREDICTOR 1, ¢ =c
. . . . . 6 ) 0 R ’ ‘ ‘.
The MAP temporal predictor is given in (9), i.e., (ciy ex) {0, otherwise
&(r; n) = arg max P(c(r; n) = ¢|Cy(r; n)) is similar to the Kronecker delta function. For any two classes
e ¢, ande;, the difference between conditional probability is thus

i=1,- K (B.1) given by

where thea posterioriconditional probability can be computed  ple(r; n) = ¢;|Cy(r; n)] — Ple(r; n) = ¢;|Cr(r; n)]
using (13), which is rewritten here for reader’s convenience.
= Z P =w) [a&(c(r +ov;n—1), ¢)

P(e(rs n) = ¢;|Cu(r; )
1 —
= Z Plc(r;n) = cle(r+vin—1))P(§=v) (B.2) + “ (1-68(c(r+v;n—1), cz))}
vew K—-1
Furthermore, we assume that the class transition probability is - P¢=v) {045(0(7“ +v;n—1), ¢)
in the form of vel
l—«
o Ha-c + oy - s v - 1, 6)
Plc(r;n) =cle(r+v;n—1)=c¢j) =¢ 1 -« .
-1 otherwise — P =w) |:og(6(c('r +v;n—1), ¢)
(BS) vew
where the transition probability between the same classs —6(c(r+wv;n—1), ¢;))
generally much larger than the transition probability to the other 1—a
class,(1 — a)/(K — 1). Now we want to prove that (16) is T K1 (6(c(r +v;n = 1), @)
> Elzp@)] X, AM + YT E[zu(z)] X, AN
sex ™ 2CX )
T = : (A.10)
M;
Z Z E[Zm|i('1")|X7 AOM] + Z E[Zmi(x)p(v AOld]
m=1 IeXgl) zeX(2)
Z E[Zj|i($)|X, AOM] x+ Z E[Zji(.’l,')|X, AOM] T
TCXZ-(U zcX(2)
hjs = (A.11)
> Elz@)|X, A + > Elzi(w)| X, A
wex® 2 X(2)
> E[zi@)|X, AM) (@ — )@ — )t + Y Elza@)|X, AN (5 — i) (@ — i)’
a:EX.(1> e X (2)
5, = 250 (A.12)

> E[Zy@)|X, AN + > E[Zj(=)| X, A
I:EXZ.U) zCX(2)
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