92,888 research outputs found

    Visual modeling of dynamic gestures using 3D appearance and motion features

    Get PDF
    We present a novel 3-D gesture recognition scheme that combines the 3-D appearance of the hand and the motion dynamics of the gesture to classify manipulative and controlling gestures. Our method does not directly track the hand. Instead, we take an object-centered approach that efficiently computes 3-D appearance using a region-based coarse stereo matching algorithm. Motion cues are captured by differentiating the appearance feature with respect to time. An unsupervised learning scheme is carried out to capture the cluster structure of these features. Then, the image sequence of a gesture is converted to a series of symbols that indicate the cluster identities of each image pair. Two schemes, i.e., forward HMMs and neural networks, are used to model the dynamics of the gestures. We implemented a real-time system and performed gesture recognition experiments to analyze the performance with different combinations of the appearance and motion features. The system achieves recognition accuracy of over 96 % using both the appearance and motion cues.

    Real-Time Action Recognition Using Multi-level Action Descriptor and DNN

    Get PDF
    This work presents a novel approach to the problem of real-time human action recognition in intelligent video surveillance. For more efficient and precise labeling of an action, this work proposes a multilevel action descriptor, which delivers complete information of human actions. The action descriptor consists of three levels: posture, locomotion, and gesture level; each of which corresponds to a different group of subactions describing a single human action, for example, smoking while walking. The proposed action recognition method is able to localize and recognize simultaneously the actions of multiple individuals using appearance-based temporal features with multiple convolutional neural networks (CNN). Although appearance cues have been successfully exploited for visual recognition problems, appearance, motion history, and their combined cues with multi-CNNs have not yet been explored. Additionally, the first systematic estimation of several hyperparameters for shape and motion history cues is investigated. The proposed approach achieves a mean average precision (mAP) of 73.2% in the frame-based evaluation over the newly collected large-scale ICVL video dataset. The action recognition model can run at around 25 frames per second, which is suitable for real-time surveillance applications

    A vision-based approach for human hand tracking and gesture recognition.

    Get PDF
    Hand gesture interface has been becoming an active topic of human-computer interaction (HCI). The utilization of hand gestures in human-computer interface enables human operators to interact with computer environments in a natural and intuitive manner. In particular, bare hand interpretation technique frees users from cumbersome, but typically required devices in communication with computers, thus offering the ease and naturalness in HCI. Meanwhile, virtual assembly (VA) applies virtual reality (VR) techniques in mechanical assembly. It constructs computer tools to help product engineers planning, evaluating, optimizing, and verifying the assembly of mechanical systems without the need of physical objects. However, traditional devices such as keyboards and mice are no longer adequate due to their inefficiency in handling three-dimensional (3D) tasks. Special VR devices, such as data gloves, have been mandatory in VA. This thesis proposes a novel gesture-based interface for the application of VA. It develops a hybrid approach to incorporate an appearance-based hand localization technique with a skin tone filter in support of gesture recognition and hand tracking in the 3D space. With this interface, bare hands become a convenient substitution of special VR devices. Experiment results demonstrate the flexibility and robustness introduced by the proposed method to HCI.Dept. of Computer Science. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2004 .L8. Source: Masters Abstracts International, Volume: 43-03, page: 0883. Adviser: Xiaobu Yuan. Thesis (M.Sc.)--University of Windsor (Canada), 2004

    Real-Time Hand Shape Classification

    Full text link
    The problem of hand shape classification is challenging since a hand is characterized by a large number of degrees of freedom. Numerous shape descriptors have been proposed and applied over the years to estimate and classify hand poses in reasonable time. In this paper we discuss our parallel framework for real-time hand shape classification applicable in real-time applications. We show how the number of gallery images influences the classification accuracy and execution time of the parallel algorithm. We present the speedup and efficiency analyses that prove the efficacy of the parallel implementation. Noteworthy, different methods can be used at each step of our parallel framework. Here, we combine the shape contexts with the appearance-based techniques to enhance the robustness of the algorithm and to increase the classification score. An extensive experimental study proves the superiority of the proposed approach over existing state-of-the-art methods.Comment: 11 page

    Egocentric Hand Detection Via Dynamic Region Growing

    Full text link
    Egocentric videos, which mainly record the activities carried out by the users of the wearable cameras, have drawn much research attentions in recent years. Due to its lengthy content, a large number of ego-related applications have been developed to abstract the captured videos. As the users are accustomed to interacting with the target objects using their own hands while their hands usually appear within their visual fields during the interaction, an egocentric hand detection step is involved in tasks like gesture recognition, action recognition and social interaction understanding. In this work, we propose a dynamic region growing approach for hand region detection in egocentric videos, by jointly considering hand-related motion and egocentric cues. We first determine seed regions that most likely belong to the hand, by analyzing the motion patterns across successive frames. The hand regions can then be located by extending from the seed regions, according to the scores computed for the adjacent superpixels. These scores are derived from four egocentric cues: contrast, location, position consistency and appearance continuity. We discuss how to apply the proposed method in real-life scenarios, where multiple hands irregularly appear and disappear from the videos. Experimental results on public datasets show that the proposed method achieves superior performance compared with the state-of-the-art methods, especially in complicated scenarios
    corecore