2,358 research outputs found

    Context-Aware Embeddings for Automatic Art Analysis

    Full text link
    Automatic art analysis aims to classify and retrieve artistic representations from a collection of images by using computer vision and machine learning techniques. In this work, we propose to enhance visual representations from neural networks with contextual artistic information. Whereas visual representations are able to capture information about the content and the style of an artwork, our proposed context-aware embeddings additionally encode relationships between different artistic attributes, such as author, school, or historical period. We design two different approaches for using context in automatic art analysis. In the first one, contextual data is obtained through a multi-task learning model, in which several attributes are trained together to find visual relationships between elements. In the second approach, context is obtained through an art-specific knowledge graph, which encodes relationships between artistic attributes. An exhaustive evaluation of both of our models in several art analysis problems, such as author identification, type classification, or cross-modal retrieval, show that performance is improved by up to 7.3% in art classification and 37.24% in retrieval when context-aware embeddings are used

    Loud and Trendy: Crowdsourcing Impressions of Social Ambiance in Popular Indoor Urban Places

    Get PDF
    New research cutting across architecture, urban studies, and psychology is contextualizing the understanding of urban spaces according to the perceptions of their inhabitants. One fundamental construct that relates place and experience is ambiance, which is defined as "the mood or feeling associated with a particular place". We posit that the systematic study of ambiance dimensions in cities is a new domain for which multimedia research can make pivotal contributions. We present a study to examine how images collected from social media can be used for the crowdsourced characterization of indoor ambiance impressions in popular urban places. We design a crowdsourcing framework to understand suitability of social images as data source to convey place ambiance, to examine what type of images are most suitable to describe ambiance, and to assess how people perceive places socially from the perspective of ambiance along 13 dimensions. Our study is based on 50,000 Foursquare images collected from 300 popular places across six cities worldwide. The results show that reliable estimates of ambiance can be obtained for several of the dimensions. Furthermore, we found that most aggregate impressions of ambiance are similar across popular places in all studied cities. We conclude by presenting a multidisciplinary research agenda for future research in this domain

    A Data Set and a Convolutional Model for Iconography Classification in Paintings

    Full text link
    Iconography in art is the discipline that studies the visual content of artworks to determine their motifs and themes andto characterize the way these are represented. It is a subject of active research for a variety of purposes, including the interpretation of meaning, the investigation of the origin and diffusion in time and space of representations, and the study of influences across artists and art works. With the proliferation of digital archives of art images, the possibility arises of applying Computer Vision techniques to the analysis of art images at an unprecedented scale, which may support iconography research and education. In this paper we introduce a novel paintings data set for iconography classification and present the quantitativeand qualitative results of applying a Convolutional Neural Network (CNN) classifier to the recognition of the iconography of artworks. The proposed classifier achieves good performances (71.17% Precision, 70.89% Recall, 70.25% F1-Score and 72.73% Average Precision) in the task of identifying saints in Christian religious paintings, a task made difficult by the presence of classes with very similar visual features. Qualitative analysis of the results shows that the CNN focuses on the traditional iconic motifs that characterize the representation of each saint and exploits such hints to attain correct identification. The ultimate goal of our work is to enable the automatic extraction, decomposition, and comparison of iconography elements to support iconographic studies and automatic art work annotation.Comment: Published at ACM Journal on Computing and Cultural Heritage (JOCCH) https://doi.org/10.1145/345888

    Visual link retrieval and knowledge discovery in painting datasets

    Get PDF
    Visual arts have invaluable importance for the cultural, historic and economic growth of our societies. One of the building blocks of most analysis in visual arts is to find similarities among paintings of different artists and painting schools. To help art historians better understand visual arts, the present paper presents a framework for visual link retrieval and knowledge discovery in digital painting datasets. The proposed framework is based on a deep convolutional neural network to perform feature extraction and on a fully unsupervised nearest neighbor approach to retrieve visual links among digitized paintings. The fully unsupervised strategy makes attractive the proposed method especially in those cases where metadata are either scarce or unavailable or difficult to collect. In addition, the proposed framework includes a graph analysis that makes it possible to study influences among artists, thus providing historical knowledge discovery.Comment: submitted to Multimedia Tools and Application

    Aesthetic preference for art emerges from a weighted integration over hierarchically structured visual features in the brain

    Get PDF
    It is an open question whether preferences for visual art can be lawfully predicted from the basic constituent elements of a visual image. Moreover, little is known about how such preferences are actually constructed in the brain. Here we developed and tested a computational framework to gain an understanding of how the human brain constructs aesthetic value. We show that it is possible to explain human preferences for a piece of art based on an analysis of features present in the image. This was achieved by analyzing the visual properties of drawings and photographs by multiple means, ranging from image statistics extracted by computer vision tools, subjective human ratings about attributes, to a deep convolutional neural network. Crucially, it is possible to predict subjective value ratings not only within but also across individuals, speaking to the possibility that much of the variance in human visual preference is shared across individuals. Neuroimaging data revealed that preference computations occur in the brain by means of a graded hierarchical representation of lower and higher level features in the visual system. These features are in turn integrated to compute an overall subjective preference in the parietal and prefrontal cortex. Our findings suggest that rather than being idiosyncratic, human preferences for art can be explained at least in part as a product of a systematic neural integration over underlying visual features of an image. This work not only advances our understanding of the brain-wide computations underlying value construction but also brings new mechanistic insights to the study of visual aesthetics and art appreciation

    Visual link retrieval and knowledge discovery in painting datasets

    Get PDF
    Visual arts are of inestimable importance for the cultural, historic and economic growth of our society. One of the building blocks of most analysis in visual arts is to find similarity relationships among paintings of different artists and painting schools. To help art historians better understand visual arts, this paper presents a framework for visual link retrieval and knowledge discovery in digital painting datasets. Visual link retrieval is accomplished by using a deep convolutional neural network to perform feature extraction and a fully unsupervised nearest neighbor mechanism to retrieve links among digitized paintings. Historical knowledge discovery is achieved by performing a graph analysis that makes it possible to study influences among artists. An experimental evaluation on a database collecting paintings by very popular artists shows the effectiveness of the method. The unsupervised strategy makes the method interesting especially in cases where metadata are scarce, unavailable or difficult to collect

    Fine Art Pattern Extraction and Recognition

    Get PDF
    This is a reprint of articles from the Special Issue published online in the open access journal Journal of Imaging (ISSN 2313-433X) (available at: https://www.mdpi.com/journal/jimaging/special issues/faper2020)

    Deep learning approaches to pattern extraction and recognition in paintings and drawings: an overview

    Get PDF
    This paper provides an overview of some of the most relevant deep learning approaches to pattern extraction and recognition in visual arts, particularly painting and drawing. Recent advances in deep learning and computer vision, coupled with the growing availability of large digitized visual art collections, have opened new opportunities for computer science researchers to assist the art community with automatic tools to analyse and further understand visual arts. Among other benefits, a deeper understanding of visual arts has the potential to make them more accessible to a wider population, ultimately supporting the spread of culture

    Adversarial Training in Affective Computing and Sentiment Analysis: Recent Advances and Perspectives

    Get PDF
    Over the past few years, adversarial training has become an extremely active research topic and has been successfully applied to various Artificial Intelligence (AI) domains. As a potentially crucial technique for the development of the next generation of emotional AI systems, we herein provide a comprehensive overview of the application of adversarial training to affective computing and sentiment analysis. Various representative adversarial training algorithms are explained and discussed accordingly, aimed at tackling diverse challenges associated with emotional AI systems. Further, we highlight a range of potential future research directions. We expect that this overview will help facilitate the development of adversarial training for affective computing and sentiment analysis in both the academic and industrial communities
    corecore