4 research outputs found

    HISTORICAL GRAPH DATA MANAGEMENT

    Get PDF
    Over the last decade, we have witnessed an increasing interest in temporal analysis of information networks such as social networks or citation networks. Finding temporal interaction patterns, visualizing the evolution of graph properties, or even simply comparing them across time, has proven to add significant value in reasoning over networks. However, because of the lack of underlying data management support, much of the work on large-scale graph analytics to date has largely focused on the study of static properties of graph snapshots. Unfortunately, a static view of interactions between entities is often an oversimplification of several complex phenomena like the spread of epidemics, information diffusion, formation of online communities, and so on. In the absence of appropriate support, an analyst today has to manually navigate the added temporal complexity of large evolving graphs, making the process cumbersome and ineffective. In this dissertation, I address the key challenges in storing, retrieving, and analyzing large historical graphs. In the first part, I present DeltaGraph, a novel, extensible, highly tunable, and distributed hierarchical index structure that enables compact recording of the historical information, and that supports efficient retrieval of historical graph snapshots. I present analytical models for estimating required storage space and snapshot retrieval times which aid in choosing the right parameters for a specific scenario. I also present optimizations such as partial materialization and columnar storage to speed up snapshot retrieval. In the second part, I present Temporal Graph Index that builds upon DeltaGraph to support version-centric retrieval such as a node’s 1-hop neighborhood history, along with snapshot reconstruction. It provides high scalability, employing careful partitioning, distribution, and replication strategies that effectively deal with temporal and topological skew, typical of temporal graph datasets. In the last part of the dissertation, I present Temporal Graph Analysis Framework that enables analysts to effectively express a variety of complex historical graph analysis tasks using a set of novel temporal graph operators and to execute them in an efficient and scalable manner on a cloud. My proposed solutions are engineered in the form of a framework called the Historical Graph Store, designed to facilitate a wide variety of large-scale historical graph analysis

    An analytics-aware conceptual model for evolving graphs

    No full text
    Graphs are ubiquitous data structures commonly used to represent highly connected data. Many real-world applications, such as social and biological networks, are modeled as graphs. To answer the surge for graph data management, many graph database solutions were developed. These databases are commonly classified as NoSQL graph databases, and they provide better support for graph data management than their relational counterparts. However, each of these databases implement their own operational graph data model, which differ among the products. Further, there is no commonly agreed conceptual model for graph databases. In this paper, we introduce a novel conceptual model for graph databases. The aim of our model is to provide analysts with a set of simple, well-defined, and adaptable conceptual components to perform rich analysis tasks. These components take into account the evolving aspect of the graph. Our model is analytics-oriented, flexible and incremental, enabling analysis over evolving graph data. The proposed model provides a typing mechanism for the underlying graph, and formally defines the minimal set of data structures and operators needed to analyze the graph. © 2013 Springer-Verlag GmbH.SCOPUS: cp.kinfo:eu-repo/semantics/publishedLadjel Bellatreche and Mukesh Mohania, editors.Proceedings of the 15th International Conference on Data Warehousing and KnowledgeDiscovery, DaWaK'13, number 8057 in Lecture Notes in Computer Science.Springer-Verlag, Prague, Czech Republi
    corecore