1,187 research outputs found

    An Analysis of Design Problems in Combinatorial Procurement Auctions

    Get PDF
    Traditional auction mechanisms support price negotiations on a single item. The Internet allows for the exchange of much more complex offers in real-time. This is one of the reasons for much research on multidimensional auction mechanisms allowing negotiations on multiple items, multiple units, or multiple attributes of an item, as they can be regularly found in procurement. Combinatorial auctions, for example, enable suppliers to submit bids on bundles of items. A number of laboratory experiments has shown high allocative efficiency in markets with economies of scope. For suppliers it is easier to express cost savings due to bundling (e. g., decreased transportation or production costs). This can lead to significant savings in total cost of the procurement manager. Procurement negotiations exhibit a number of particularities: – It is often necessary to consider qualitative attributes or volume discounts in bundle bids. These complex bid types have not been sufficiently analyzed. – The winner determination problem requires the consideration of a number of additional business constraints, such as limits on the spend on a particular supplier or the number of suppliers. – Iterative combinatorial auctions have a number of advantages in practical applications, but they also lead to new problems in the determination of ask prices. In this paper, we will discuss fundamental problems in the design of combinatorial auctions and the particularities of procurement applications. Reprint of an article from WIRTSCHAFTSINFORMATIK 47(2)2005:126–134

    Competition Between Auctions

    Get PDF
    Even though auctions are capturing an increasing share of commerce, they are typically treated in the theoretical economics literature as isolated. That is, an auction is typically treated as a single seller facing multiple buyers or as a single buyer facing multiple sellers. In this paper, we review the state of the art of competition between auctions. We consider three different types of competition: competition between auctions, competition between formats, and competition between auctioneers vying for auction traffic. We highlight the newest experimental, statistical and analytical methods in the analysis of competition between auctions.auctions, bidding, competition, auction formats, auction houses

    Coordination of Purchasing and Bidding Activities Across Markets

    Get PDF
    In both consumer purchasing and industrial procurement, combinatorial interdependencies among the items to be purchased are commonplace. E-commerce compounds the problem by providing more opportunities for switching suppliers at low costs, but also potentially eases the problem by enabling automated market decision-making systems, commonly referred to as trading agents, to make purchasing decisions in an integrated manner across markets. Most of the existing research related to trading agents assumes that there exists a combinatorial market mechanism in which buyers (or sellers) can bid (or sell) service or merchant bundles. Todayâ??s prevailing e-commerce practice, however, does not support this assumption in general and thus limits the practical applicability of these approaches. We are investigating a new approach to deal with the combinatorial interdependency challenges for online markets. This approach relies on existing commercial online market institutions such as posted-price markets and various online auctions that sell single items. It uses trading agents to coordinate a buyerâ??s purchasing and bidding activities across multiple online markets simultaneously to achieve the best overall procurement effectiveness. This paper presents two sets of models related to this approach. The first set of models formalizes optimal purchasing decisions across posted-price markets with fixed transaction costs. Flat shipping costs, a common e-tailing practice, are captured in these models. We observe that making optimal purchasing decisions in this context is NP-hard in the strong sense and suggest several efficient computational methods based on discrete location theory. The second set of models is concerned with the coordination of bidding activities across multiple online auctions. We study the underlying coordination problem for a collection of first or second-price sealed-bid auctions and derive the optimal coordination and bidding policies.

    An Agent Based Market Design Methodology for Combinatorial Auctions

    Get PDF
    Auction mechanisms have attracted a great deal of interest and have been used in diverse e-marketplaces. In particular, combinatorial auctions have the potential to play an important role in electronic transactions. Therefore, diverse combinatorial auction market types have been proposed to satisfy market needs. These combinatorial auction types have diverse market characteristics, which require an effective market design approach. This study proposes a comprehensive and systematic market design methodology for combinatorial auctions based on three phases: market architecture design, auction rule design, and winner determination design. A market architecture design is for designing market architecture types by Backward Chain Reasoning. Auction rules design is to design transaction rules for auctions. The specific auction process type is identified by the Backward Chain Reasoning process. Winner determination design is about determining the decision model for selecting optimal bids and auctioneers. Optimization models are identified by Forward Chain Reasoning. Also, we propose an agent based combinatorial auction market design system using Backward and Forward Chain Reasoning. Then we illustrate a design process for the general n-bilateral combinatorial auction market. This study serves as a guideline for practical implementation of combinatorial auction markets design.Combinatorial Auction, Market Design Methodology, Market Architecture Design, Auction Rule Design, Winner Determination Design, Agent-Based System

    An Overview of Combinatorial Auctions

    Get PDF
    An auction is combinatorial when bidders can place bids on combinations of items, called “packages,” rather than just individual items. Computer scientists are interested in combinatorial auctions because they are concerned with the expressiveness of bidding languages, as well as the algorithmic aspects of the underlying combinatorial problem. The combinatorial problem has attracted attention from operations researchers, especially those working in combinatorial optimization and mathematical programming, who are fascinated by the idea of applying these tools to auctions. Auctions have been studied extensively by economists, of course. Thus, the newly emerging field of combinatorial auctions lies at the intersection of computer science, operations research, and economics. In this article, we present a brief introduction to combinatorial auctions, based on our book, Combinatorial Auctions (MIT Press, 2006), in which we look at combinatorial auctions from all three perspectives.Auctions

    Dynamic threshold policy for delaying and breaking commitments in transportation auctions

    Get PDF
    In this paper we consider a transportation procurement auction consisting of shippers and carriers. Shippers offer time sensitive pickup and delivery jobs and carriers bid on these jobs. We focus on revenue maximizing strategies for shippers in sequential auctions. For this purpose we propose two strategies, namely delaying and breaking commitments. The idea of delaying commitments is that a shipper will not agree with the best bid whenever it is above a certain reserve price. The idea of breaking commitments is that the shipper allows the carriers to break commitments against certain penalties. The benefits of both strategies are evaluated with simulation. In addition we provide insight in the distribution of the lowest bid, which is estimated by the shippers

    Taking the Lab to the Field: Experimental Tests of Alternative Mechanisms to Procure Multiple Contracts

    Get PDF
    The first part of the paper reports the results from a sequence of laboratory experiments comparing the bidding behavior for multiple contracts in three different sealed bid auction mechanisms; first-price simultaneous, first-price sequential and first-price combinatorial bidding. The design of the experiment is based on experiences from a public procurement auction of road markings in Sweden. Bidders are asymmetric in their cost functions; some exhibit decreasing average costs of winning more than one contract, whereas other bidders have increasing average cost functions. The combinatorial bidding mechanism is demonstrated to be most efficient. The second part of the paper describes how the lab experiment was followed up by a field test of a combinatorial procurement auction of road markings.Multiple units, non-constant costs, asymmetric redemption values, alternative procurement mechanisms
    corecore