678 research outputs found

    Post-processing approaches for the improvement of cardiac ultrasound B-mode images:a review

    Get PDF

    Adaptive Speckle Filtering in Radar Imagery

    Get PDF

    Speckle reduction in SAR imagery

    Get PDF
    Synthetic Aperture Radar (SAR) is a popular tool for airborne and space-borne remote sensing. Inherent to SAR imagery is a type of multiplicative noise known as speckle. There are a number of different approaches which may be taken in order to reduce the amount of speckle noise in SAR imagery. One of the approaches is termed post image formation processing and this is the main concern of this thesis. Background theory relevant to the speckle reduction problem is presented. The physical processes which lead to the formation of speckle are investigated in order to understand the nature of speckle noise. Various statistical properties of speckle noise in different types of SAR images are presented. These include Probability Distribution Functions as well as means and standard deviations. Speckle is considered as a multiplicative noise and a general model is discussed. The last section of this chapter deals with the various approaches to speckle reduction. Chapter three contains a review of the literature pertaining to speckle reduction. Multiple look methods are covered briefly and then the various classes of post image formation processing are reviewed. A number of non-adaptive, adaptive and segmentation-based techniques are reviewed. Other classes of technique which are reviewed include Morphological filtering, Homomorphic processing and Transform domain methods. From this review, insights can be gained as to the advantages and disadvantages of various methods. A number of filtering algorithms which are either promising, or are representative of a class of techniques, are chosen for implementation and analysis

    Blur resolved OCT: full-range interferometric synthetic aperture microscopy through dispersion encoding

    Get PDF
    We present a computational method for full-range interferometric synthetic aperture microscopy (ISAM) under dispersion encoding. With this, one can effectively double the depth range of optical coherence tomography (OCT), whilst dramatically enhancing the spatial resolution away from the focal plane. To this end, we propose a model-based iterative reconstruction (MBIR) method, where ISAM is directly considered in an optimization approach, and we make the discovery that sparsity promoting regularization effectively recovers the full-range signal. Within this work, we adopt an optimal nonuniform discrete fast Fourier transform (NUFFT) implementation of ISAM, which is both fast and numerically stable throughout iterations. We validate our method with several complex samples, scanned with a commercial SD-OCT system with no hardware modification. With this, we both demonstrate full-range ISAM imaging, and significantly outperform combinations of existing methods.Comment: 17 pages, 7 figures. The images have been compressed for arxiv - please follow DOI for full resolutio

    Deep learning for inverse problems in remote sensing: super-resolution and SAR despeckling

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen
    corecore