991 research outputs found

    Real-Time Vector Automata

    Full text link
    We study the computational power of real-time finite automata that have been augmented with a vector of dimension k, and programmed to multiply this vector at each step by an appropriately selected k×kk \times k matrix. Only one entry of the vector can be tested for equality to 1 at any time. Classes of languages recognized by deterministic, nondeterministic, and "blind" versions of these machines are studied and compared with each other, and the associated classes for multicounter automata, automata with multiplication, and generalized finite automata.Comment: 14 page

    The separation problem for regular languages by piecewise testable languages

    Full text link
    Separation is a classical problem in mathematics and computer science. It asks whether, given two sets belonging to some class, it is possible to separate them by another set of a smaller class. We present and discuss the separation problem for regular languages. We then give a direct polynomial time algorithm to check whether two given regular languages are separable by a piecewise testable language, that is, whether a BΣ1(<)B{\Sigma}1(<) sentence can witness that the languages are indeed disjoint. The proof is a reformulation and a refinement of an algebraic argument already given by Almeida and the second author

    On Nonnegative Integer Matrices and Short Killing Words

    Full text link
    Let nn be a natural number and M\mathcal{M} a set of n×nn \times n-matrices over the nonnegative integers such that the joint spectral radius of M\mathcal{M} is at most one. We show that if the zero matrix 00 is a product of matrices in M\mathcal{M}, then there are M1,…,Mn5∈MM_1, \ldots, M_{n^5} \in \mathcal{M} with M1⋯Mn5=0M_1 \cdots M_{n^5} = 0. This result has applications in automata theory and the theory of codes. Specifically, if X⊂Σ∗X \subset \Sigma^* is a finite incomplete code, then there exists a word w∈Σ∗w \in \Sigma^* of length polynomial in ∑x∈X∣x∣\sum_{x \in X} |x| such that ww is not a factor of any word in X∗X^*. This proves a weak version of Restivo's conjecture.Comment: This version is a journal submission based on a STACS'19 paper. It extends the conference version as follows. (1) The main result has been generalized to apply to monoids generated by finite sets whose joint spectral radius is at most 1. (2) The use of Carpi's theorem is avoided to make the paper more self-contained. (3) A more precise result is offered on Restivo's conjecture for finite code

    The Non-Archimedean Theory of Discrete Systems

    Full text link
    In the paper, we study behavior of discrete dynamical systems (automata) w.r.t. transitivity; that is, speaking loosely, we consider how diverse may be behavior of the system w.r.t. variety of word transformations performed by the system: We call a system completely transitive if, given arbitrary pair a,ba,b of finite words that have equal lengths, the system A\mathfrak A, while evolution during (discrete) time, at a certain moment transforms aa into bb. To every system A\mathfrak A, we put into a correspondence a family FA\mathcal F_{\mathfrak A} of continuous maps of a suitable non-Archimedean metric space and show that the system is completely transitive if and only if the family FA\mathcal F_{\mathfrak A} is ergodic w.r.t. the Haar measure; then we find easy-to-verify conditions the system must satisfy to be completely transitive. The theory can be applied to analyze behavior of straight-line computer programs (in particular, pseudo-random number generators that are used in cryptography and simulations) since basic CPU instructions (both numerical and logical) can be considered as continuous maps of a (non-Archimedean) metric space Z2\mathbb Z_2 of 2-adic integers.Comment: The extended version of the talk given at MACIS-201

    Finite transducers for divisibility monoids

    Get PDF
    Divisibility monoids are a natural lattice-theoretical generalization of Mazurkiewicz trace monoids, namely monoids in which the distributivity of the involved divisibility lattices is kept as an hypothesis, but the relations between the generators are not supposed to necessarily be commutations. Here, we show that every divisibility monoid admits an explicit finite transducer which allows to compute normal forms in quadratic time. In addition, we prove that every divisibility monoid is biautomatic.Comment: 20 page
    • …
    corecore