29 research outputs found

    Discretization strategies for computing Conley indices and Morse decompositions of flows

    Full text link
    Conley indices and Morse decompositions of flows can be found by using algorithms which rigorously analyze discrete dynamical systems. This usually involves integrating a time discretization of the flow using interval arithmetic. We compare the old idea of fixing a time step as a parameters to a time step continuously varying in phase space. We present an example where this second strategy necessarily yields better numerical outputs and prove that our outputs yield a valid Morse decomposition of the given flow

    Continuous and piecewise affine Lyapunov functions using the Yoshizawa construction

    Get PDF
    6 p.International audienceWe present a novel numerical technique for the computation of a Lyapunov function for nonlinear systems with an asymptotically stable equilibrium point. Our proposed approach constructs a continuous piecewise affine (CPA) function given a suitable partition of the state space, called a triangulation, and values at the vertices of the triangulation. The vertex values are obtained from a Lyapunov function in a classical converse Lyapunov theorem and verification that the obtained CPA function is a Lyapunov function is shown to be equivalent to verification of several simple inequalities. Furthermore, by refining the triangulation, we show that it is always possible to construct a CPA Lyapunov function. Numerical examples are presented demonstrating the effectiveness of the proposed method

    Simplicial Multivalued Maps and the Witness Complex for Dynamical Analysis of Time Series

    Full text link
    Topology based analysis of time-series data from dynamical systems is powerful: it potentially allows for computer-based proofs of the existence of various classes of regular and chaotic invariant sets for high-dimensional dynamics. Standard methods are based on a cubical discretization of the dynamics and use the time series to construct an outer approximation of the underlying dynamical system. The resulting multivalued map can be used to compute the Conley index of isolated invariant sets of cubes. In this paper we introduce a discretization that uses instead a simplicial complex constructed from a witness-landmark relationship. The goal is to obtain a natural discretization that is more tightly connected with the invariant density of the time series itself. The time-ordering of the data also directly leads to a map on this simplicial complex that we call the witness map. We obtain conditions under which this witness map gives an outer approximation of the dynamics, and thus can be used to compute the Conley index of isolated invariant sets. The method is illustrated by a simple example using data from the classical H\'enon map.Comment: laTeX, 9 figures, 32 page

    Finite Resolution Dynamics

    Full text link
    We develop a new mathematical model for describing a dynamical system at limited resolution (or finite scale), and we give precise meaning to the notion of a dynamical system having some property at all resolutions coarser than a given number. Open covers are used to approximate the topology of the phase space in a finite way, and the dynamical system is represented by means of a combinatorial multivalued map. We formulate notions of transitivity and mixing in the finite resolution setting in a computable and consistent way. Moreover, we formulate equivalent conditions for these properties in terms of graphs, and provide effective algorithms for their verification. As an application we show that the Henon attractor is mixing at all resolutions coarser than 10^-5.Comment: 25 pages. Final version. To appear in Foundations of Computational Mathematic

    Chain recurrence rates and topological entropy

    Get PDF
    We investigate the properties of chain recurrent, chain transitive, and chain mixing maps (generalizations of the well-known notions of non-wandering, topologically transitive, and topologically mixing maps). We describe the structure of chain transitive maps. These notions of recurrence are defined using \ep-chains, and the minimal lengths of these \ep-chains give a way to measure recurrence time (chain recurrence and chain mixing times). We give upper and lower bounds for these recurrence times and relate the chain mixing time to topological entropy
    corecore