13 research outputs found

    Axiomatizing Omega and Omega-op Powers of Words

    Get PDF
    In 1978, Courcelle asked for a complete set of axioms and rules for the equational theory of (discrete regular) words equipped with the operations of product, omega power and omega-op power. In this paper we find a simple set of equations and prove they are complete. Moreover, we show that the equational theory is decidable in polynomial time

    An Algebraic Approach to Mso-Definability on Countable Linear Orderings

    Get PDF
    We develop an algebraic notion of recognizability for languages of words indexed by countable linear orderings. We prove that this notion is effectively equivalent to definability in monadic second-order (MSO) logic. We also provide three logical applications. First, we establish the first known collapse result for the quantifier alternation of MSO logic over countable linear orderings. Second, we solve an open problem posed by Gurevich and Rabinovich, concerning the MSO-definability of sets of rational numbers using the reals in the background. Third, we establish the MSO-definability of the set of yields induced by an MSO-definable set of trees, confirming a conjecture posed by Bruyère, Carton, and Sénizergues

    Regular Languages of Thin Trees

    Get PDF

    Regular tree languages in low levels of the Wadge Hierarchy

    Full text link
    In this article we provide effective characterisations of regular languages of infinite trees that belong to the low levels of the Wadge hierarchy. More precisely we prove decidability for each of the finite levels of the hierarchy; for the class of the Boolean combinations of open sets BC(Σ10)BC(\Sigma_1^0) (i.e. the union of the first ω\omega levels); and for the Borel class Δ20\Delta_2^0 (i.e. for the union of the first ω1\omega_1 levels)

    Recognisable languages over monads

    Full text link
    The principle behind algebraic language theory for various kinds of structures, such as words or trees, is to use a compositional function from the structures into a finite set. To talk about compositionality, one needs some way of composing structures into bigger structures. It so happens that category theory has an abstract concept for this, namely a monad. The goal of this paper is to propose monads as a unifying framework for discussing existing algebras and designing new algebras

    Baire and automata

    Get PDF
    In his thesis Baire defined functions of Baire class 1. A function f is of Baire class 1 if it is the pointwise limit of a sequence of continuous functions. Baire proves the following theorem. A function f is not of class 1 if and only if there exists a closed nonempty set F such that the restriction of f to F has no point of continuity. We prove the automaton version of this theorem. An ω-rational function is not of class 1 if and only if there exists a closed nonempty set F recognized by a Büchi automaton such that the restriction of f to F has no point of continuity. This gives us the opportunity for a discussion on Hausdorff's analysis of Δ°2, ordinals, transfinite induction and some applications of computer science
    corecore