19,840 research outputs found

    Achievable Rates for K-user Gaussian Interference Channels

    Full text link
    The aim of this paper is to study the achievable rates for a KK user Gaussian interference channels for any SNR using a combination of lattice and algebraic codes. Lattice codes are first used to transform the Gaussian interference channel (G-IFC) into a discrete input-output noiseless channel, and subsequently algebraic codes are developed to achieve good rates over this new alphabet. In this context, a quantity called efficiency is introduced which reflects the effectiveness of the algebraic coding strategy. The paper first addresses the problem of finding high efficiency algebraic codes. A combination of these codes with Construction-A lattices is then used to achieve non trivial rates for the original Gaussian interference channel.Comment: IEEE Transactions on Information Theory, 201

    Nonuniform Fuchsian codes for noisy channels

    Get PDF
    We develop a new transmission scheme for additive white Gaussian noisy (AWGN) channels based on Fuchsian groups from rational quaternion algebras. The structure of the proposed Fuchsian codes is nonlinear and nonuniform, hence conventional decoding methods based on linearity and symmetry do not apply. Previously, only brute force decoding methods with complexity that is linear in the code size exist for general nonuniform codes. However, the properly discontinuous character of the action of the Fuchsian groups on the complex upper half-plane translates into decoding complexity that is logarithmic in the code size via a recently introduced point reduction algorithm

    Golden codes: quantum LDPC codes built from regular tessellations of hyperbolic 4-manifolds

    Full text link
    We adapt a construction of Guth and Lubotzky [arXiv:1310.5555] to obtain a family of quantum LDPC codes with non-vanishing rate and minimum distance scaling like n0.1n^{0.1} where nn is the number of physical qubits. Similarly as in [arXiv:1310.5555], our homological code family stems from hyperbolic 4-manifolds equipped with tessellations. The main novelty of this work is that we consider a regular tessellation consisting of hypercubes. We exploit this strong local structure to design and analyze an efficient decoding algorithm.Comment: 30 pages, 4 figure

    Low Complexity Encoding for Network Codes

    Get PDF
    In this paper we consider the per-node run-time complexity of network multicast codes. We show that the randomized algebraic network code design algorithms described extensively in the literature result in codes that on average require a number of operations that scales quadratically with the blocklength m of the codes. We then propose an alternative type of linear network code whose complexity scales linearly in m and still enjoys the attractive properties of random algebraic network codes. We also show that these codes are optimal in the sense that any rate-optimal linear network code must have at least a linear scaling in run-time complexity
    corecore