4,591 research outputs found

    An Algebraic Approach for Decoding Spread Codes

    Full text link
    In this paper we study spread codes: a family of constant-dimension codes for random linear network coding. In other words, the codewords are full-rank matrices of size (k x n) with entries in a finite field F_q. Spread codes are a family of optimal codes with maximal minimum distance. We give a minimum-distance decoding algorithm which requires O((n-k)k^3) operations over an extension field F_{q^k}. Our algorithm is more efficient than the previous ones in the literature, when the dimension k of the codewords is small with respect to n. The decoding algorithm takes advantage of the algebraic structure of the code, and it uses original results on minors of a matrix and on the factorization of polynomials over finite fields

    On Maximum Contention-Free Interleavers and Permutation Polynomials over Integer Rings

    Full text link
    An interleaver is a critical component for the channel coding performance of turbo codes. Algebraic constructions are of particular interest because they admit analytical designs and simple, practical hardware implementation. Contention-free interleavers have been recently shown to be suitable for parallel decoding of turbo codes. In this correspondence, it is shown that permutation polynomials generate maximum contention-free interleavers, i.e., every factor of the interleaver length becomes a possible degree of parallel processing of the decoder. Further, it is shown by computer simulations that turbo codes using these interleavers perform very well for the 3rd Generation Partnership Project (3GPP) standard.Comment: 13 pages, 2 figures, submitted as a correspondence to the IEEE Transactions on Information Theory, revised versio

    Partial Spreads in Random Network Coding

    Full text link
    Following the approach by R. K\"otter and F. R. Kschischang, we study network codes as families of k-dimensional linear subspaces of a vector space F_q^n, q being a prime power and F_q the finite field with q elements. In particular, following an idea in finite projective geometry, we introduce a class of network codes which we call "partial spread codes". Partial spread codes naturally generalize spread codes. In this paper we provide an easy description of such codes in terms of matrices, discuss their maximality, and provide an efficient decoding algorithm

    Message Encoding for Spread and Orbit Codes

    Full text link
    Spread codes and orbit codes are special families of constant dimension subspace codes. These codes have been well-studied for their error correction capability and transmission rate, but the question of how to encode messages has not been investigated. In this work we show how the message space can be chosen for a given code and how message en- and decoding can be done.Comment: Submitted to IEEE International Symposium on Information Theory 201

    On Algebraic Decoding of qq-ary Reed-Muller and Product-Reed-Solomon Codes

    Full text link
    We consider a list decoding algorithm recently proposed by Pellikaan-Wu \cite{PW2005} for qq-ary Reed-Muller codes RMq(,m,n)\mathcal{RM}_q(\ell, m, n) of length nqmn \leq q^m when q\ell \leq q. A simple and easily accessible correctness proof is given which shows that this algorithm achieves a relative error-correction radius of τ(1qm1/n)\tau \leq (1 - \sqrt{{\ell q^{m-1}}/{n}}). This is an improvement over the proof using one-point Algebraic-Geometric codes given in \cite{PW2005}. The described algorithm can be adapted to decode Product-Reed-Solomon codes. We then propose a new low complexity recursive algebraic decoding algorithm for Reed-Muller and Product-Reed-Solomon codes. Our algorithm achieves a relative error correction radius of τi=1m(1ki/q)\tau \leq \prod_{i=1}^m (1 - \sqrt{k_i/q}). This technique is then proved to outperform the Pellikaan-Wu method in both complexity and error correction radius over a wide range of code rates.Comment: 5 pages, 5 figures, to be presented at 2007 IEEE International Symposium on Information Theory, Nice, France (ISIT 2007
    corecore