190 research outputs found

    An Algebra for Directed Bigraphs

    Get PDF
    We study the algebraic structure of directed bigraphs, a bigraphical model of computations with locations, connections and resources previously introduced as a unifying generalization of other variants of bigraphs. We give a sound and complete axiomatization of the (pre)category of directed bigraphs. Using this axiomatization, we give an adequate encoding of the Fusion calculus, showing the utility of the added directnes

    Variable binding, symmetric monoidal closed theories, and bigraphs

    Get PDF
    This paper investigates the use of symmetric monoidal closed (SMC) structure for representing syntax with variable binding, in particular for languages with linear aspects. In our setting, one first specifies an SMC theory T, which may express binding operations, in a way reminiscent from higher-order abstract syntax. This theory generates an SMC category S(T) whose morphisms are, in a sense, terms in the desired syntax. We apply our approach to Jensen and Milner's (abstract binding) bigraphs, which are linear w.r.t. processes. This leads to an alternative category of bigraphs, which we compare to the original.Comment: An introduction to two more technical previous preprints. Accepted at Concur '0

    Bigraphs with sharing

    Get PDF
    Bigraphical Reactive Systems (BRS) were designed by Milner as a universal formalism for modelling systems that evolve in time, locality, co-locality and connectivity. But the underlying model of location (the place graph) is a forest, which means there is no straightforward representation of locations that can overlap or intersect. This occurs in many domains, for example in wireless signalling, social interactions and audio communications. Here, we define bigraphs with sharing, which solves this problem by an extension of the basic formalism: we define the place graph as a directed acyclic graph, thus allowing a natural representation of overlapping or intersecting locations. We give a complete presentation of the theory of bigraphs with sharing, including a categorical semantics, algebraic properties, and several essential procedures for computation: bigraph with sharing matching, a SAT encoding of matching, and checking a fragment of the logic BiLog. We show that matching is an instance of the NP-complete sub-graph isomorphism problem and our approach based on a SAT encoding is also efficient for standard bigraphs. We give an overview of BigraphER (Bigraph Evaluator & Rewriting), an efficient implementation of bigraphs with sharing that provides manipulation, simulation and visualisation. The matching engine is based on the SAT encoding of the matching algorithm. Examples from the 802.11 CSMA/CA RTS/CTS protocol and a network management support system illustrate the applicability of the new theory

    Ten virtues of structured graphs

    Get PDF
    This paper extends the invited talk by the first author about the virtues of structured graphs. The motivation behind the talk and this paper relies on our experience on the development of ADR, a formal approach for the design of styleconformant, reconfigurable software systems. ADR is based on hierarchical graphs with interfaces and it has been conceived in the attempt of reconciling software architectures and process calculi by means of graphical methods. We have tried to write an ADR agnostic paper where we raise some drawbacks of flat, unstructured graphs for the design and analysis of software systems and we argue that hierarchical, structured graphs can alleviate such drawbacks
    corecore