
An Algebra for Directed Bigraphs �

Davide Grohmanna,1 Marino Miculana,2

a Department of Mathematics and Computer Science, University of Udine, Italy

Abstract

We study the algebraic structure of directed bigraphs, a bigraphical model of computations with locations,
connections and resources previously introduced as a unifying generalization of other variants of bigraphs.
We give a sound and complete axiomatization of the (pre)category of directed bigraphs. Using this axiom-
atization, we give an adequate encoding of the Fusion calculus, showing the utility of the added directness.

Keywords: Bigraphical models, categorical meta-models for Concurrency, fusion calculus.

1 Introduction

Bigraphical reactive systems (BRSs) are an emerging graphical meta-model of com-

putation introduced by Milner [9,11] in which both locality and connectivity are

central notions. The key structure of BRSs are bigraphs, which are composed by

two orthogonal graph structures: a hierarchical place graph describing locations,

and a link (hyper-)graph describing connections. The reaction rules, representing

the dynamics of the BRS, may change both these structures. Several process calculi

for Concurrency can be represented in bigraphs, such as CCS, pure Mobile Ambi-

ents, and (using a mild generalization called binding bigraphs), also the π-calculus

and the λ-calculus [12]. An important feature of bigraphs is that they support a

very general construction, based on the notion of relative pushout (RPO) [7], which

allows to turn reaction rules into labelled transition systems.

However, Milner’s definition of bigraphs is not the only possible one. Sassone

and Sobociński have given in [15] an alternative definition, derived from a general

categorical construction, the “input-linear cospan” over a particular 2-category of

� Work supported by Italian MIUR project 2005015824 Art.
1 Email: grohmann@dimi.uniud.it
2 Email: miculan@dimi.uniud.it

Electronic Notes in Theoretical Computer Science 203 (2008) 49–63

1571-0661 © 2008 Elsevier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2008.03.033
Open access under CC BY-NC-ND license.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Archivio istituzionale della ricerca - Università degli Studi di Udine

https://core.ac.uk/display/53328231?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:grohmann@dimi.uniud.it
mailto:miculan@dimi.uniud.it
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

place-link graphs. Also this variant enjoys a general construction of RPOs. Inter-

estingly, Milner’s and Sassone-Sobociński’s variants do not coincide; in fact, these

two categories and their respective RPO constructions do not generalize each other.

In previous work [5,4], we have presented directed bigraphs, a generalization of

both these kinds of bigraphs. Intuitively, the idea of directed bigraphs is to notice

that names are not resources on their own, but only a way for denoting (abstract)

resources (i.e., edges). A system can “ask” for external resources thorugh the names

on its interfaces. Thus, we can identify a “resource request flow” starting from

control ports, going through names and terminating in edges. This information

is represented in the new notion of directed link graph, which replaces the previous

notion of link graphs. We have given RPO constructions for this model, generalizing

and unifying the constructions independently given by Jensen-Milner and Sassone-

Sobociński in their respective variants. Moreover, the very same construction can

be used for calculating relative pullbacks as well.

In this paper, we continue this line of investigation. We study the algebraic

structure of directed bigraphs, giving a sound and complete axiomatization of this

(pre)category. Moreover, we use the operators of this axiomatization for encoding

the Fusion calculus, a calculus which was not dealt with by the previous versions

of bigraphs. This encoding is adequate, in the sense that congruent processes are

represented by exactly the same bigraph, and reduction steps in the original calculus

is mimicked one-to-one by steps in the encoding.

Synopsis In Section 2 we briefly recall the main definitions about directed bigraphs

and abstract directed bigraphs. In Section 3 we analyze the algebraic structure

of directed bigraphs; this analysis is then carried on to the category of abstract

directed bigraphs in Section 4. In Section 5 we put directed bigraphs at work,

giving an encoding of the Fusion calculus. Conclusions are in Section 6.

2 Directed bigraphs

In this section we recall the definition and some properties of directed bigraphs; for

details, we refer to [5,4]. Following Milner’s approach, we work in precategories;

see [8, §3] for an introduction to the theory of supported monoidal precategories.

(We prefer precategories to 2-categories, because their concreteness allows for more

direct definitions.)

Let K be a given signature of controls, and ar : K → ω the arity function.

Definition 2.1 A polarized interface X is a pair of disjoint sets of names X =

(X−,X+); the two components are called downward and upward faces, respectively.

A directed link graph A : X → Y is A = (V,E, ctrl, link) where X and Y

are the inner and outer interfaces, V is the set of nodes, E is the set of edges,

ctrl : V → K is the control map, and link : Pnt(A) → Lnk(A) is the link map,

where the ports, the points and the links of A are defined as follows (where +

D. Grohmann, M. Miculan / Electronic Notes in Theoretical Computer Science 203 (2008) 49–6350

denotes disjoint union):

Prt(A)�
∑
v∈V

ar(ctrl(v)) Pnt(A) � (X++Y −)�Prt(A) Lnk(A) � (X−+Y +)�E

The link map cannot connect downward and upward names of the same interface,

i.e., the following condition must hold: (link(X+) ∩ X−) ∪ (link(Y −) ∩ Y +) = ∅.

Directed link graphs are graphically depicted much like ordinary link graphs,

with the difference that edges are explicit objects and points and names are asso-

ciated to edges (or other names) by (simple) directed arcs. This notation makes

explicit the “resource request flow”: ports and names in the interfaces can be asso-

ciated either to locally defined resources (i.e., a local edge) or to resources available

from outside the system (i.e., via an outward name).

Definition 2.2 (′DLG) The precategory of directed link graphs has polarized in-

terfaces as objects, and directed link graphs as morphisms.

Given two directed link graphs Ai = (Vi, Ei, ctrli, linki) : Xi → Xi+1 (i = 0, 1),

the composition A1 ◦A0 : X0 → X2 is defined when the two link graphs have disjoint

nodes and edges. In this case, A1 ◦ A0 � (V,E, ctrl, link), where V � V0 � V1,

ctrl � ctrl0 � ctrl1, E � E0 �E1 and link : (X+
0 + X−

2) � Pr → E � (X−
0 + X+

2) is

defined as follows (where Pr = Prt(A0) � Prt(A1)):

link(p) �

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

link0(p) if p ∈ X+
0 � Prt(A0) and link0(p) ∈ E0 � X−

0

link1(x) if p ∈ X+
0 � Prt(A0) and link0(p) = x ∈ X+

1

link1(p) if p ∈ X−
2 � Prt(A1) and link1(p) ∈ E1 � X+

2

link0(x) if p ∈ X−
2 � Prt(A1) and link1(p) = x ∈ X−

1 .

The identity link graph of X is idX � (∅, ∅, ∅K, IdX−�X+) : X → X.

Definition 2.3 The support of a link graph A = (V,E, ctrl, link) is the set |A| �
V + E.

Definition 2.4 (idle, lean, open, closed, peer) Let A : X → Y be a link graph.

A link l ∈ Lnk(A) is idle if it is not in the image of the link map (i.e., l 	∈
link(Pnt(A))). The link graph A is lean if there are no idle links.

A link l is open if it is an inner downward name or an outer upward name (i.e.,

l ∈ X− ∪ Y +); it is closed if it is an edge.

A point p is open if link(p) is an open link; otherwise it is closed. Two points

p1, p2 are peer if they are mapped to the same link, that is link(p1) = link(p2).

Proposition 2.5 A link graph A : X → Y is epi iff there are no peer names in Y −

and no idle names in Y +. Dually, A is mono iff there are no idle names in X−

and no peer names in X+.

A is an isomorphism iff it has no nodes, no edges, and its link map can be

decomposed in two bijections link+ : X+ → Y +, link− : Y − → X−.

Definition 2.6 The tensor product ⊗ in ′DLG is defined as follows. Given two

D. Grohmann, M. Miculan / Electronic Notes in Theoretical Computer Science 203 (2008) 49–63 51

objects X, Y , if these are pairwise disjoint then X ⊗ Y � (X− � Y −,X+ � Y +).

Given two link graphs Ai = (Vi, Ei, ctrli, linki) : Xi → Yi (i = 0, 1), if the tensor

products of the interfaces are defined and the sets of nodes and edges are pairwise

disjoint then the tensor product A0⊗A1 : X0⊗X1 → Y0⊗Y1 is defined as A0⊗A1 �
(V0 � V1, E0 � E1, ctrl0 � ctrl1, link0 � link1).

Finally, we can define the directed bigraphs as the composition of standard place

graphs (see [8, §7] for definitions) and directed link graphs.

Definition 2.7 A (bigraphical) interface I is composed by a width (a finite ordinal,

denoted by width(I)) and by a polarized interface of link graphs (i.e., a pair of finite

sets of names). A directed bigraph with signature K is G = (V,E, ctrl, prnt, link) :

I → J , where I = 〈m,X〉 and J = 〈n, Y 〉 are its inner and outer interfaces respec-

tively; V and E are the sets of nodes and edges respectively, and prnt, ctrl and link

are the parent, control and link maps, such that GP � (V, ctrl, prnt) : m → n is a

place graph and GL � (V,E, ctrl, link) : X → Y is a directed link graph.

We denote G as combination of GP and GL by G = 〈GP , GL〉. In this notation,

a place graph and a (directed) link graph can be put together iff they have the same

sets of nodes and edges.

Definition 2.8 (′DBig) The precategory ′DBig of directed bigraph with signature

K has interfaces I = 〈m,X〉 as objects and directed bigraphs G = 〈GP , GL〉 : I → J

as morphisms. If H : J → K is another directed bigraph with sets of nodes and edges

disjoint from V and E respectively, then their composition is defined by composing

their components, i.e.: H ◦ G � 〈HP ◦ GP ,HL ◦ GL〉 : I → K..

The identity directed bigraph of I = 〈m,X〉 is 〈idm, IdX−�X+〉 : I → I.

Proposition 2.9 A directed bigraph G in ′DBig is epi (respectively mono) iff its

two components GP and GL are epi (respectively mono).

The isomorphisms in ′DBig are all the combinations ι = 〈ιP , ιL〉 of an isomor-

phism in ′PLG and an isomorphism in ′DLG.

Definition 2.10 The tensor product ⊗ in ′DBig is defined as follows. Given

I = 〈m,X〉 and J = 〈n, Y 〉, where X and Y are pairwise disjoint, then 〈m,X〉 ⊗
〈n, Y 〉 � 〈m + n, (X− � Y −,X+ � Y +)〉.

The tensor product of Gi : Ii → Ji is defined as G0⊗G1 � 〈GP
0 ⊗GP

1 , GL
0 ⊗GL

1 〉 :

I0 ⊗ I1 → J0 ⊗ J1, when the tensor products of the interfaces are defined and the

sets of nodes and edges are pairwise disjoint.

Remarkably, directed link graphs (and bigraphs) have relative pushouts (RPOs)

and pullbacks (RPBs), which can be obtained by a general construction, subsuming

both Milner’s and Sassone-Sobociński’s variants. We refer the reader to [5,4].

Actually, in many situations we do not want to distinguish bigraphs differing

only on the identity of nodes and edges. To this end, we introduce the category

DBig of abstract directed bigraphs. The category DBig is constructed from ′DBig

forgetting the identity of nodes and edges and any idle edge. More precisely, abstract

bigraphs are concrete bigraphs taken up-to an equivalence � (see [8] for details).

D. Grohmann, M. Miculan / Electronic Notes in Theoretical Computer Science 203 (2008) 49–6352

Definition 2.11 (abstract directed bigraphs) Two concrete directed bigraphs

G and H are lean-support equivalent, written G � H, if they are support equivalent

after removing any idle edges.

The category DBig of abstract directed bigraphs has the same objects as ′DBig,

and its arrows are lean-support equivalence classes of directed bigraphs. We denote

by A : ′DBig → DBig the associated quotient functor.

We remark that DBig is a category (and not only a precategory); moreover, A
enjoys several important properties which we omit here due to lack of space; see [8].

3 Algebraic structure of ′DBig

We begin this section introducing some useful notations.

Remark 3.1 An interface 〈0, (X−,X+)〉 is abbreviated as (X−,X+); a singleton

set {x} as x; and 〈m, (∅, ∅)〉 as m. The interfaces (∅, ∅) and 0 denote the same

interface, the origin ε. Hence the identity idε can be expressed as ε, (∅, ∅) or 0.

A bigraph A : (∅,X+) → (∅, Y +) is defined by a (not necessarily surjective)

function σ : X+ → Y +, called substitution, if it has no nodes and no edges and

the link map is σ; analogously a bigraph A : (X−, ∅) → (Y −, ∅) is defined by a (not

necessarily surjective) function δ : Y − → X−, called fusion, if it has no nodes and

no edges and the link map is δ. With abuse of notation, we write σ and δ to mean

their corresponding bigraphs.

Let
x,
y be two vectors of the same length; we write (y0/x0, y1/x1, . . .) or ��y
�x,

where all the xi are distinct, for the surjective map xi �→ yi; similarly, we write

(y0/x0, y1/x1, . . .) or ��y
�x, where all yi are distinct, for the surjective map yi �→ xi.

We denote by �X : (∅, ∅) → (∅,X) the bigraph defined by the empty substitution

σ : ∅ → X, in the same way we denote �X : (X, ∅) → (∅, ∅) for the bigraph defined

by the empty fusion δ : ∅ → X.

Note that each substitution σ can be expressed in a unique way as σ = τ ⊗ �X ,

where τ is a surjective substitution; while each fusion δ can be expressed in a unique

way as δ = ζ ⊗ �X , where ζ is a surjective fusion. We denote the renamings by α,

i.e. the bijective substitution or bijective fusion.

Finally, we introduce the closure bigraphs. The closure �
�

x
y : (∅, y) → (x, ∅) has

no nodes, a unique edge e and the link map is link(x) = e = link(y). Two other

types of closures are obtained by composing the closure �
�

x
y and �x or �y respectively:

• the up-closure �y : (∅, y) → (∅, ∅) has no nodes, one edge e and link(y) = e;

• the down-closure �x : (∅, ∅) → (x, ∅) has no nodes, one edge e and link(x) = e.

Definition 3.2 (wirings) A wiring is a bigraph whose interfaces have zero width

(and hence has no nodes). The wirings ω are generated by the composition or tensor

product of three base elements: the substitutions σ : (∅,X+) → (∅, Y +); the fusions

δ : (Y −, ∅) → (X−, ∅); and the closures �
�

x
y : (∅, y) → (x, ∅).

Definition 3.3 (prime bigraph) An interface is prime if it has width equal to 1.

Often we abbreviate a prime interface 〈1, (X−,X+)〉 with 〈(X−,X+)〉, in particular

〈(∅, ∅)〉 = 1. A prime bigraph P : 〈m, (Y −, ∅)〉 → 〈(∅,X+)〉 has no upward inner

D. Grohmann, M. Miculan / Electronic Notes in Theoretical Computer Science 203 (2008) 49–63 53

names and no downward outer names, and has a prime outer interface.

An important prime bigraph is mergem : m → 1, it has no nodes and it maps m

sites to an unique root. A bigraph G : n → 〈m, (X−,X+)〉 without inner names, it

can be simply converted in a prime bigraph as follows: (mergem ⊗ id(X−,X+)) ◦ G.

Definition 3.4 (discrete bigraph) A bigraph D is discrete if it has no edges and

the link map is a bijection. That means all points are open, there are no peer points

and no idle link.

The discreteness is well-behaved, and preserved by composition and tensor products.

It is easy to see that discrete bigraphs form a monoidal sub-precategory of ′DBig.

Definition 3.5 (ion, atom and molecule) For any non atomic control K with

arity k and a pair of sequence
x− and
x+ of distinct names, whose overall length

is k, we define the discrete ion K(v)�x
+

�x− : 〈(
x−, ∅)〉 → 〈(∅,
x+)〉 as the bigraph with

a unique K-node v, whose ports are separately linked to
x− or to
x+. We omit v

when it can be understood.

For a prime discrete bigraph P with outer names (∅, Y +) the composite (K�x+

�x− ⊗
id(∅,Y +)) ◦ P is a discrete molecule. If K is atomic, we define the discrete atom

K�x+

�x− : (
x−, ∅) → 〈(∅,
x+)〉; it resembles an ion, but has no site.

An arbitrary (non-discrete) ion, molecule or atom is formed by the composition

of ω⊗id1 with a discrete one. Often we omit · · ·⊗idI in the compositions, when there

is no ambiguity; for example we write mergem◦G to mean (mergem⊗id(X−,X+))◦G

and K�x+

�x− ◦ P to mean (K�x+

�x− ⊗ id(∅,Y +)) ◦ P (for P prime discrete). Note that every

atom and every molecule are prime, furthermore an atom is also ground, but a

molecule is not necessarily ground, since it may have sites.

Now, we define some variants of the tensor product, allowing sharing of names.

Process calculi often have a parallel product P | Q, that allows the processes P and

Q to share names. In directed bigraphs, this sharing can involve inner downward

names and/or outer upword names, as described by the following definitions.

Definition 3.6 (sharing products) The outer sharing product, inner sharing

product and sharing product of two link graphs Ai : Xi → Yi (i = 0, 1) are de-

fined as follows:

(X−,X+) � (Y −, Y +) � (X− � Y −,X+ ∪ Y +)

(X−,X+) � (Y −, Y +) � (X− ∪ Y −,X+ � Y +)

A0 � A1 � (V0 � V1, E0 � E1, ctrl0 � ctrl1, link0 � link1) : X0 ⊗ X1 → Y0 � Y1

A0 � A1 � (V0 � V1, E0 � E1, ctrl0 � ctrl1, link0 � link1) : X0 � X1 → Y0 ⊗ Y1

A0 ‖ A1 � (V0 � V1, E0 � E1, ctrl0 � ctrl1, link0 � link1) : X0 � X1 → Y0 � Y1

defined when their interfaces are defined and Ai have disjoint node and edge sets.

The outer sharing product, inner sharing product and sharing product of two

bigraphs Gi : Ii → Ji are defined by extending the corresponding products on their

D. Grohmann, M. Miculan / Electronic Notes in Theoretical Computer Science 203 (2008) 49–6354

link graphs with the tensor product on widths and place graphs:

〈m,X〉 � 〈n, Y 〉 � 〈n + m,X � Y 〉 〈m,X〉 � 〈n, Y 〉 � 〈n + m,X � Y 〉

G0 � G1 � 〈GP
0 ⊗ GP

1 , GL
0 � GL

1 〉 : I0 ⊗ I1 → J0 � J1

G0 � G1 � 〈GP
0 ⊗ GP

1 , GL
0 � GL

1 〉 : I0 � I1 → J0 ⊗ J1

G0 ‖ G1 � 〈GP
0 ⊗ GP

1 , GL
0 ‖ GL

1 〉 : I0 � I1 → J0 � J1.

defined when their interfaces are defined and Gi have disjoint node and edge sets.

It is simple to verify that �, � and ‖ are associative, with unit ε.

Another way of constructing a sharing product of two bigraphs G0, G1 is to

disjoin the names of G0 and G1, then take the tensor product of the two bigraphs

and finally merge the name again:

Proposition 3.7 Let G0 and G1 be bigraphs with disjoint node and edge sets. Then

G0 � G1 = σ(G0 ⊗ τG1) G0 � G1 = (G0 ⊗ G1ζ)δ G0 ‖ G1 = σ(G0 ⊗ τG1ζ)δ

where the substitution σ and τ are defined in the following way: if zi (i ∈ n) are

the upward outer names shared by G0 and G1, and wi are fresh names in bijection

with the zi, then τ(zi) = wi and σ(wi) = σ(zi) = zi (i ∈ n). The substitution δ and

ζ are defined in a very similar way, but acting on the downward inner names.

Definition 3.8 (prime products) The prime outer sharing product and prime

sharing product of two bigraphs Gi : Ii → Ji are defined as follows:

〈m, (X−,X+)〉 � 〈n, (Y −, Y +)〉 � 〈(X− � Y −,X+ ∪ Y +)〉

G0 � G1 � merge(width(J0)+width(J1)) ◦ (G0 � G1) : I0 ⊗ I1 → J0 � J1

G0 | G1 � merge(width(J0)+width(J1)) ◦ (G0 ‖ G1) : I0 � I1 → J0 � J1.

defined when their interfaces are defined and Gi have disjoint node and edge sets.

It is easy to show that � and | are associative, with unit 1 when applied to prime

bigraphs. Note that for a wiring ω and a prime bigraph P , we have ω � P = ω � P

and ω | P = ω ‖ P , because in this case these products have the same meaning.

Now, we can describe discrete bigraphs, which complement wirings:

Theorem 3.9 (discrete normal form) (i) Every bigraph G can be expressed

uniquely (up to iso) as: G = (ω ⊗ idn) ◦ D ◦ (ω′ ⊗ idm), where D is a dis-

crete bigraph and ω, ω′ are two wirings satisfying the following conditions:
• in ω, if two outer downward names are peer, then their target is an edge;
• in ω′ there are no edges, and no two inner upward names are peer (i.e., on in-

ner upward names ω′ is a renaming, but outer downward names can be peer).

(ii) Every discrete bigraph D : 〈m, (X−,X+)〉 → 〈n, (Y −, Y +)〉 may be factored

uniquely (up to iso) on the domain of each factor Di, as:

D = α ⊗ ((D0 ⊗ · · · ⊗ Dn−1) ◦ (π ⊗ id
dom(�D)

))

D. Grohmann, M. Miculan / Electronic Notes in Theoretical Computer Science 203 (2008) 49–63 55

with α a renaming, each Di prime and discrete, and π a permutation.

Proof. For the first part, consider a bigraph G : 〈n, (X−,X+)〉 → 〈m, (Y −, Y +)〉.
We divide G in three parts: a discrete D : 〈n, (Z−, Z+)〉 → 〈m, (W−,W+)〉 and

two wirings ω : (W−,W+) → (Y −, Y +) and ω′ : (X−,X+) → (Z−, Z+) satisfying

the previous conditions. We proceed by cases (where Pr � Prt(G) = Prt(D)):

p ∈ Pr, linkG(p) = e ∈ E: we add a fresh name we ∈ W+ and define linkD(p) = we

and linkω(we) = e;

p ∈ Pr, linkG(p) = y ∈ Y +: we add a fresh name wy ∈ W+ and define linkD(p) =

wy and linkω(wy) = y;

p ∈ Pr, linkG(p) = x ∈ X−: this case is analogous to the previous one;

y ∈ Y −, linkG(y) = e ∈ E: we define linkω(y) = e;

x ∈ X+, linkG(y) = e ∈ E: we add a fresh name ze ∈ Z+, a fresh name we ∈ W+

and define linkω′(x) = ze, linkD(ze) = we, linkω(we) = e;

y ∈ Y −, linkG(y) = x ∈ X−: we add a fresh name wx ∈ W−, a fresh name zx ∈ Z−

and define linkω(y) = wx, linkD(wx) = zx and linkω′(zx) = x;

x ∈ X+, linkG(x) = y ∈ Y +: this case is analogous to the previous one; it is suffi-

cient to invert the direction of links and swap the rule of ω with ω′.

Note that there are no idle names in Z−, Z+, W− and W+, so those sets are formed

only by the fresh names defined in this proof. Furthermore, the three conditions

above holds because we create a fresh name every time we need one.

The proof of the second part is easy. Since the outer interface of D has width

n, we can decompose D in n discrete and prime parts, obtaining D0 ⊗ · · · ⊗ Dn−1.

The renaming α describe the connections between the inner interface and the outer

one. Finally the permutation π gives the right sequence of the sites, so we can take

the tensor product of Di (i = 0,n − 1) in any order. �

We call this unique factorization discrete normal form (DNF). The DNF ap-

plies to abstract bigraphs as well, and indeed it will play an important part in the

complete axiomatization of DBig, as we will discuss in the next section.

Note that a renaming is discrete but not prime (since it has zero width); this is

why the factorization in Theorem 3.9(ii) has such a factor. This unique factorization

depends on the fact that the prime bigraphs have no upward inner names and

downward outer names. In the special case that D is ground, the factorization in

Theorem 3.9(ii) is simply D = d0 ⊗ · · · ⊗ dn−1, that is a product of discrete and

prime ground bigraphs.

4 Algebraic structure of DBig

In this section we describe a sound and complete axiomatization for directed ab-

stract bigraphs, similarly to that given by Milner for pure bigraphs [10]. Further-

more we give a normal form for discrete bigraphs.

First we introduce the algebraic signature, that is a set of elementary bigraphs

D. Grohmann, M. Miculan / Electronic Notes in Theoretical Computer Science 203 (2008) 49–6356

y

x

�
�

x
y :(∅, y) → (x, ∅) closure

y

x1x2. . .xn

. . . �y
X :(∅,X) → (∅, y) substitution

x

y1y2. . .ym

. . . �Y
x :(x, ∅) → (Y, ∅) fusion

1:ε → 1 a barren root

1 2 merge:2 → 1 mapping 2 sites in 1 root

m+1 . . . m+n 1 . . . n γm,n:m + n → n + m swapping m with n

y1y2. . . yn

x1x2. . .xm
. . .

. . .
K�x

�y :〈(
y, ∅)〉 → 〈(∅,
x)〉 a discrete ion

Fig. 1. Elementary Bigraphs

able to define any other bigraph (Figure 1).

We have to show that all bigraphs can be constructed from these elementary

ones by composition and tensor product. Before giving a formal result, we provide

an intutive explanation of the meaning of these elementary bigraphs.

• The first three bigraphs build up all wirings, i.e. all the link graphs having no

nodes. Indeed, all substitutions (fusions, resp.) can be obtained as tensor products

of elementary substitutions �y
X (fusions �Y

x , resp.); the tensor products of single-

ton substitutions �y
x and/or singleton fusions �x

y give all renamings. The compo-

sition and the tensor product of substitutions, fusions and closures give all wirings.

• The next three bigraphs define all placings, i.e. all place graphs having no nodes;

for example mergem : m → 1, merging m sites in a unique root, are defined as:

merge0 � 1 mergem+1 � merge ◦ (id1 ⊗ mergem).

Notice that merge1 = id and merge2 = merge, and that all permutations

π : m → m are constructed by composition and tensor from the γm,n.

• Finally, for expressing any direct bigraph we need to add only the discrete ions

K�x+

�x−
. In particular, we can express any discrete atoms as K�x+

�x−
◦ 1.

The following proposition shows that every bigraph can be expressed in a normal

form, called (again) discrete normal form (DNF). We will use D, Q and N to denote

discrete, discrete prime bigraphs, and the discrete molecules respectively.

Proposition 4.1 (discrete normal form) In DBig every bigraph G, discrete D,

D. Grohmann, M. Miculan / Electronic Notes in Theoretical Computer Science 203 (2008) 49–63 57

Categorical Axioms

A ◦ id = A = id ◦ A A ◦ (B ◦ C) = (A ◦ B) ◦ C

A ⊗ idε = A = idε ⊗ A A ⊗ (B ⊗ C) = (A ⊗ B) ⊗ C

γI,ε = idI γJ,I ◦ γI,J = idI⊗J

(A1 ⊗ B1) ◦ (A0 ⊗ B0) = (A1 ◦ A0) ⊗ (B1 ◦ B0)

γI,K ◦ (A ⊗ B) = (B ⊗ A) ◦ γH,J (where A : H → I,B : J → K)

γI⊗J,K = (γI,K ⊗ idJ) ◦ (idI ⊗ γJ,K)

Link Axioms
�
�

x
y ◦ �y

z = �
�

x
z �z

x ◦ �
�

x
y = �

�

z
y �x ◦ �

�

x
y ◦ �y = idε

�z
(Y �y) ◦ (id(∅,Y) ⊗ �y

X) = �z
(Y �X) (id(Y,∅) ⊗ �X

y) ◦ �(Y �y)
z = �(X�Y)

z

Place Axioms

merge ◦ (1 ⊗ id1) = id1 merge ◦ γ1,1 = merge

merge ◦ (merge ⊗ id1) = merge ◦ (id1 ⊗ merge)

Node Axioms

(id1 ⊗ α) ◦ K�x+

�x− = K
α(�x+)
�x−

K�x+

�x− ◦ (id1 ⊗ α) = K�x+

α(�x−)

Fig. 2. Axiomatization for the abstract directed bigraphs.

discrete and prime Q and discrete molecule N can be described by an expression of

the respective following form:

G = (ω ⊗ idn) ◦ D ◦ (ω′ ⊗ idm) (1)

where ω, ω′ satisfy the conditions given in Theorem 3.9(i);

D = α ⊗ ((Q0 ⊗ · · · ⊗ Qn−1) ◦ (π ⊗ id
dom(�Q))) (2)

Q = (mergen+p ⊗ id∅,Y +) ◦ (idn ⊗ N0 ⊗ · · · ⊗ Np−1) ◦ (π ⊗ id(Y −,∅)) (3)

N = (K�x+

�x− ⊗ id∅,Y +) ◦ Q. (4)

Furthermore, the expression is unique up to isomorphisms on the parts.

We can use these equations for normalizing any bigraph G as follows; first, we

apply equations (1), (2) to G once, obtaining an expression containing discrete

and prime bigraphs Q0, . . . , Qn−1. These are decomposed further using equations

(3), (4) repeatedly: each Qi is decomposed into an expression containing molecules

Ni,0, . . . , Ni,pi−1, each of which is decomposed in turn into an ion containing another

discrete and prime bigraph Q′
i,j. The last two steps are repeated recursively until

the ions are atoms or have only holes as children. Note that the unit 1 is a special

case of Q when n = p = 0.

In Figure 2 we give a set of axioms which we prove to be sound and complete.

Each of these equations holds only when both sides are defined; in particular,

D. Grohmann, M. Miculan / Electronic Notes in Theoretical Computer Science 203 (2008) 49–6358

recall that the tensor product of two bigraphs is defined only if the name sets are

disjoint. It is important to notice also that for ions only the renaming axiom is

needed (because the names are treated positionally).

Theorem 4.2 (Completeness of the axiomatization) Let us consider two ex-

pressions E0, E1 constructed from the elementary bigraphs by composition and ten-

sor product. Then, E0 and E1 denote the same bigraph in DBig if and only if the

equation E0 = E1 can be proved by the axioms in Figure 2.

Proof. The proof is similar to that of [8, Theorem 10.2]. The “if” direction is

simple to prove, since it requires to check that each axiom is valid. The “only if”

direction is in two steps. First, we prove by induction on the structure of expressions,

that the equality between an expression and its DNF is derivable from the axioms.

Next, since DNFs are taken up to iso, we have to show that the equality between

isomorphic DNFs is provable from the axioms. This is proved by showing that the

axioms can prove the isomorphisms of the components of a DNF, which are ions,

discrete and prime bigraphs, and discrete bigraphs. �

5 An Application: the Fusion Calculus

In this section we apply the theory developed in the previous sections to the Fusion

calculus [13]. The processes of the finite (monadic) Fusion calculus are defined by

the following grammar (sum and fusion prefix can be easily encoded in this syntax):

P,Q ::= 0 | zx.P | z̄x.P | P |Q | (x)P

where x, y, z range over a countable set of names N , the processes are taken up to

the structural congruence (≡), that is the least congruence satisfying the abelian

monoid laws for composition and the scope laws and scope extension law:

(x)0 ≡ 0 (x)(y)P ≡ (y)(x)P P |(x)Q ≡ (x)(P |Q) where x /∈ fn(P).

In [13], the semantics of the Fusion calculus is given by a labelled transition

system for deriving transitions of the form P
ϕ
→ Q where ϕ is a fusion, that is a

finite equivalence over names of the form {x1=y1, . . . , xn=yn}. Here we adopt a

reaction semantics, similar to that of Explicit Fusion [3]. The configuration of a

process is denoted by a pair (P,ϕ) to mean that P has associated the fusion ϕ. We

define (P,ϕ) → (Q,ψ) to be the least relation closed under the following rules

Com
uϕv

(ūx.P |vy.Q,ϕ) → (P |Q,ϕ ∪ {x=y})

(P,ϕ) → (Q,ψ)

(P |R,ϕ) → (Q|R,ψ)

(P{z/x}, ϕ) → (Q,ψ)

((x)P,ϕ) → ((x)Q{y/z}, ψ � z)
z 	∈ dom(φ) and y =

{
w if z=w ∈ ψ

x otherwise

where ψ � z = ψ∩(N \{z})2∪{z=z}. It is easy to check that (P,ϕ) → (Q,ϕ∪ψ) iff

Pσ
ψσ
→ Qσ in the LTS semantics of [13], for any substitution σ which agrees with ϕ.

D. Grohmann, M. Miculan / Electronic Notes in Theoretical Computer Science 203 (2008) 49–63 59

x z

getx,z

z y

sendy,z

Fig. 3. The controls of the signature for the Fusion calculus.

�yx.0|(x)z̄x.0�{z=y}

∑
[n]∈{z=y} �

[n]
n ◦ �

�

n
n ◦ �n

[n]

�yx.0|(x)z̄x.0�{y,z,x}

x y z

x y z

Fig. 4. An example of encoding a fusion process in directed bigraphs.

The signature for representing Fusion processes in directed bigraphs is

KF � {get:2, send:2}

where get and send are passive (Figure 3).

The encoding of processes into bigraphs is based on the idea of representing

Fusion names as names on the interfaces, and each name equivalence class by a

resource, i.e., an edge. Open names are outer names accessing to internal edges;

bound names correspond to edges not accessible from outside.

Formally, a process P is translated to a bigraph of DBig(KF) in two steps.

First, for X a finite set of names such that fn(P) ⊆ X, we define a bigraph

�P �X : ε → 〈1, (∅,X)〉, using the algebraic operators defined in the previous sections:

�0�X = 1 � X �P |Q�X = �P �X � �Q�X �(x)P �X = �x ◦ �P �X�{x}

�zx.P �X = getx,z ◦ �P �X �z̄x.P �X = sendx,z ◦ �P �X where x, z ∈ X

Notice that names in X are represented as outer upward names. In this translation

bound names are represented by local (not accessible) edges.

Then, the encoding of a process P under a fusion ϕ takes the bigraph �P �fn(P)

and associates to each name in fn(P) an outer accessible edge, according to ϕ:

�P �ϕ =

⎛
⎝ ∑

[n]ϕ∈ϕ

�
[n]ϕ
n ◦ �

�

n
n ◦ �n

[n]ϕ

⎞
⎠ ◦

⎛
⎝�P �fn(P) ⊗

∑
m∈Y \fn(P)

�m

⎞
⎠

Fusions are represented by linking the fused names (in the outer interface) to the

same edge. An example of encoding is given in Figure 4.

The encoding of the syntax is adequate, in the sense that two congruent processes

are represented by exactly the same bigraph:

D. Grohmann, M. Miculan / Electronic Notes in Theoretical Computer Science 203 (2008) 49–6360

x z y

0 1

(��
x
x ⊗ �

�
z
z ⊗ �

�
y
y) ◦ (getx,z � sendy,z) → (�z ⊗ (�x,y

w ◦ �
w)) � id1 � id1

x z y

0 1
Fuse

x y

0 1

(��
x
x ⊗ �

�
y
y) ◦ (getx,x � sendy,x) → (�x,y

w ◦ �
w) � id1 � id1

x y

0 1
Fusesend

x y

0 1

(��
x
x ⊗ �

�
y
y) ◦ (getx,y � sendy,y) → (�x,y

w ◦ �
w) � id1 � id1

x y

0 1
Fuseget

x z

0 1

(��
x
x ⊗ �

�
z
z) ◦ (getx,z � sendx,z) → (�z ⊗ �

x) � id1 � id1

x z

0 1
Sync1

z

0 1

�
�

z
z ◦ (getz,z � sendz,z) → �

z � id1 � id1

z

0 1
Sync2

Fig. 5. Reaction rules RF for the Fusion calculus.

Proposition 5.1 Let P and Q be two processes; then P ≡ Q if and only if �P �ϕ =

�Q�ϕ, for every fusion ϕ.

The reaction rules RF are shown in Figure 5. The five rules cover the various

possibilities of existing fusions between the names involved in the communication

rule of the original semantics. As in the case of Milner’s bigraphical reactive systems,

D. Grohmann, M. Miculan / Electronic Notes in Theoretical Computer Science 203 (2008) 49–63 61

these rules can be instantiated with only discrete ground bigraphs over the signature

KF ; for details see [6, §3.1].

We have the following adequacy result.

Proposition 5.2 (P,ϕ) → (P ′, ϕ′) ⇐⇒ �P �ϕ −→ �P ′�ϕ′ .

Proof. (⇒) The application of the Com rule of the Fusion calculus is encoded

by applying one of the rules in DF on the correct sub-bigraph, i.e. the one which

encodes the right side of the rule.

(⇐) If �P �ϕ −→ �P ′�ϕ′ , then there is an application of one of the rules in DF ,

so we use the Com rule of the Fusion on the corresponding P sub-process. �

Working with the abstract bigraphs we obtain the exact match between the

Fusion reactions and bigraphic one.

The encoding of the Fusion calculus given in this paper differs from that in

[6], where an “explicit fusion” control was used; hence, a single Fusion reaction

(communication) had to be mimicked by a sequence of several bigraphical reactions,

due to the “execution” of explicit fusions produced by the communication. Instead,

in the encoding given here there is a one-to-one correspondence between Fusion and

bigraphical reactions. On the other hand, the present reaction system is larger (it

has five rules instead of three), and it is not orthogonal in the sense of [6].

6 Conclusions

In this paper we have given a sound and complete axiomatization of the precategory

of directed bigraphs, a bigraphical model which subsumes and generalizes both Mil-

ner’s and Sassone-Sobociński variants. We have used this axiomatization for giving

an encoding the Fusion calculus, taking advantage of the peculiarities of directed

bigraphs; e.g., edges represent equivalence classes of names. Differently from the en-

coding given in [6], here reactions in the encoding are in one-to-one correspondence

with those in the original semantics (at the price of two more rules).

We plan to use this axiomatization for representing other calculi, in particular

calculi with resources, locations, etc., which can be represented by edges. An in-

teresting candidate is the ν-calculus [14]; it will be interesting to see which kind of

wide transition systems we would obtain.

The new discrete normal form, and associated composition operations, presented

in this paper can be useful in view of possible applications and extensions of logics

and matching tools for bigraphs, in the line of [1,2]. Another future work is to give

a 2-categorical definitions of directed link graphs.

Acknowledgement

The authors thanks the anonymous referees for useful remarks and suggestions.

D. Grohmann, M. Miculan / Electronic Notes in Theoretical Computer Science 203 (2008) 49–6362

References

[1] Birkedal, L., T. C. Damgaard, A. Glenstrup and R. Milner, Matching of bigraphs, in: Proceedings of
Graph Transformation for Verification and Concurrency 2006, 2007.

[2] Conforti, G., D. Macedonio and V. Sassone, Spatial logics for bigraphs, in: L. Caires, G. F. Italiano,
L. Monteiro, C. Palamidessi and M. Yung, editors, ICALP, Lecture Notes in Computer Science 3580
(2005), pp. 766–778.

[3] Gardner, P. and L. Wischik, Explicit fusions, in: M. Nielsen and B. Rovan, editors, Proceedings of
MFCS 2000, LNCS 1893 (2000), pp. 373–382.

[4] Grohmann, D. and M. Miculan, Directed bigraphs: theory and applications, Technical Report
UDMI/12/2006/RR, Department of Mathematics and Computer Science, University of Udine (2006),
available at http://www.dimi.uniud.it/miculan/Papers/ .

[5] Grohmann, D. and M. Miculan, Directed bigraphs, in: Proc. XXIII MFPS, ENTCS 173 (2007), pp.
121–137.

[6] Grohmann, D. and M. Miculan, Reactive systems over directed bigraphs, in: L. Caires and
V. Vasconcelos, editors, Proc. CONCUR 2007, Lecture Notes in Computer Science 4703 (2007), pp.
380–394.

[7] Jensen, O. H. and R. Milner, Bigraphs and transitions, in: Proc. POPL, 2003, pp. 38–49.

[8] Jensen, O. H. and R. Milner, Bigraphs and mobile processes (revised), Technical report UCAM-CL-
TR-580, Computer Laboratory, University of Cambridge (2004).

[9] Milner, R., Bigraphical reactive systems, in: K. G. Larsen and M. Nielsen, editors, Proc. 12th CONCUR,
Lecture Notes in Computer Science 2154 (2001), pp. 16–35.

[10] Milner, R., Axioms for bigraphical structure, Mathematical Structures in Computer Science 15 (2005),
pp. 1005–1032.

[11] Milner, R., Pure bigraphs: Structure and dynamics, Information and Computation 204 (2006), pp. 60–
122.

[12] Milner, R., Local bigraphs and confluence: Two conjectures, in: Proc. EXPRESS 2006, Electronic Notes
in Theoretical Computer Science 175(3) (2007), pp. 65–73.

[13] Parrow, J. and B. Victor, The fusion calculus: Expressiveness and symmetry in mobile processes, in:
Proceedings of LICS ’98, IEEE (1998), pp. 176–185.
URL http://www.docs.uu.se/~victor/tr/fusion.shtml

[14] Pitts, A. M. and I. D. B. Stark, Observable properties of higher order functions that dynamically create
local names, or what’s new?, in: A. M. Borzyszkowski and S. Sokolowski, editors, MFCS, Lecture Notes
in Computer Science 711 (1993), pp. 122–141.

[15] Sassone, V. and P. Sobociński, Reactive systems over cospans, in: Proc. LICS (2005), pp. 311–320.

D. Grohmann, M. Miculan / Electronic Notes in Theoretical Computer Science 203 (2008) 49–63 63

http://www.dimi.uniud.it/miculan/Papers/
http://www.docs.uu.se/~victor/tr/fusion.shtml

	Introduction
	Directed bigraphs
	Algebraic structure of 'DBig
	Algebraic structure of DBig
	An Application: the Fusion Calculus
	Conclusions
	References

