3 research outputs found

    Survey On Fault Tolerance In Grid Computing

    Full text link

    An agent oriented proactive fault-tolerant framework for grid computing

    No full text
    Because of computational grid heterogeneity, scale and complexity, faults become likely. Therefore, grid infrastructure must have mechanisms to deal with faults while also providing efficient and reliable services to its end users. Existing fault-tolerant approaches are inefficient because they are reactive and incomplete. They are reactive because they only deal with faults when they take place; they are incomplete because they only deal with certain types of faults. Proactive approaches increase efficiency by reducing the cost and time of operations and network resource usage by maintaining the state of executing applications and resuming operation when rescheduled. This paper presents an agent oriented, fault-tolerant grid framework where agents deal with individual faults proactively. Agents maintain information about hardware conditions, executing process memory consumption, available resources, network conditions and component mean time to failure. Based on this information and critical states, agent can improve the reliability and efficiency of grid services

    Locality-driven checkpoint and recovery

    Get PDF
    Checkpoint and recovery are important fault-tolerance techniques for distributed systems. The two categories of existing strategies incur unacceptable performance cost either at run time or upon failure recovery, when applied to large-scale distributed systems. In particular, the large number of messages and processes in these systems causes either considerable checkpoint as well as logging overhead, or catastrophic global-wise recovery effect. This thesis proposes a locality-driven strategy for efficiently checkpointing and recovering such systems with both affordable runtime cost and controllable failure recoverability. Messages establish dependencies between distributed processes, which can be either preserved by coordinated checkpoints or removed via logging. Existing strategies enforce a uniform handling policy for all message dependencies, and hence gains advantage at one end but bears disadvantage at the other. In this thesis, a generic theory of Quasi-Atomic Recovery has been formulated to accommodate message handling requirements of both kinds, and to allow using different message handling methods together. Quasi-atomicity of recovery blocks implies proper confinement of recoveries, and thus enables localization of checkpointing and recovery around such a block and consequently a hybrid strategy with combined advantages from both ends. A strategy of group checkpointing with selective logging has been proposed, based on the observation of message localization around 'locality regions' in distributed systems. In essence, a group-wise coordinated checkpoint is created around such a region and only the few inter-region messages are logged subsequently. Runtime overhead is optimized due to largely reduced logging efforts, and recovery spread is as localized as region-wise. Various protocols have been developed to provide trade-offs between flexibility and performance. Also proposed is the idea of process clone that can be used to effectively remove program-order recovery dependencies among successive group checkpoints and thus to stop inter-group recovery spread. Distributed executions exhibit locality of message interactions. Such locality originates from resolving distributed dependency localization via message passing, and appears as a hierarchical 'region-transition' pattern. A bottom-up approach has been proposed to identify those regions, by detecting popular recurrence patterns from individual processes as 'locality intervals', and then composing them into 'locality regions' based on their tight message coupling relations between each other. Experiments conducted on real-life applications have shown the existence of hierarchical locality regions and have justified the feasibility of this approach. Performance optimization of group checkpoint strategies has to do with their uses of locality. An abstract performance measure has been-proposed to properly integrate both runtime overhead and failure recoverability in a region-wise marner. Taking this measure as the optimization objective, a greedy heuristic has been introduced to decompose a given distributed execution into optimized regions. Analysis implies that an execution pattern with good locality leads to good optimized performance, and the locality pattern itself can serve as a good candidate for the optimal decomposition. Consequently, checkpoint protocols have been developed to efficiently identify optimized regions in such an execution, with assistance of either design-time or runtime knowledge
    corecore