
LOCALITY-DRIVEN CHECKPOINT AND RECOVERY

ZUNCE WEI

A THESIS

IN

THE DEPARTMENT

OF

COMPUTER SCIENCE AND SOFTWARE ENGINEERING

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY (P H . D .) AT

CONCORDIA UNIVERSITY

MONTREAL, QUEBEC, CANADA

APRIL 2 0 1 0

© Z U N C E WEI, 2 0 1 0

1 * 1
Library and Archives
Canada

Published Heritage
Branch

Bibliothgque et
Archives Canada

Direction du
Patrimoine de l'6dition

395 Wellington Street
Ottawa ON K1A 0N4
Canada

395, rue Wellington
Ottawa ON K1A0N4
Canada

Your file Votre reference
ISBN: 978-0-494-67379-9
Our Tile Notre reference
ISBN: 978-0-494-67379-9

NOTICE: AVIS:

The author has granted a non-
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur a accorde une licence non exclusive
permettant a la Biblioth&que et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par Nnternet, preter,
distribuer et vendre des theses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, electronique et/ou
autres formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these. Ni
la these ni des extraits substantiels de celle-ci
ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Conformement a la loi canadienne sur la
protection de la vie privee, quelques
formulaires secondaires ont ete enleves de
cette these.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

1 * 1

Canada

Abstract

Locality-Driven Checkpoint and Recovery

Zunce Wei, Ph.D.

Concordia University, 2010

Checkpoint and recovery are important fault-tolerance techniques for distributed systems.

The two categories of existing strategies incur unacceptable performance cost either at

run time or upon failure recovery, when applied to large-scale distributed systems. In

particular, the large .number of messages and processes in these systems causes either

considerable checkpoint as well as logging overhead, or catastrophic global-wise

recovery effect. This thesis proposes a locality-driven strategy for efficiently

checkpointing and recovering such systems with both affordable runtime cost and

controllable failure recoverability.

Messages establish dependencies between distributed processes, which can be either

preserved by coordinated checkpoints or removed via logging. Existing strategies enforce

a uniform handling policy for all message dependencies^ and hence gains advantage at

one end but bears disadvantage at the other. In this thesis, a generic theory of Quasi-

Atomic Recovery has been formulated to accommodate message handling requirements

of both kinds, and to allow using different message handling methods together. Quasi-

atomicity of recovery blocks implies proper confinement of recoveries, and thus enables

localization of checkpointing and recovery around such a block and consequently a

hybrid strategy with combined advantages from both ends.

A strategy of group checkpointing with selective logging has been proposed, based

iii

on the observation of message localization around 'locality regions' in distributed

systems. In essence, a group-wise coordinated checkpoint is created around such a region

and only the few inter-region messages are logged subsequently. Runtime overhead is

optimized due to largely reduced logging efforts, and recovery spread is as localized as

region-wise. Various protocols have been developed to provide trade-offs between

flexibility and performance. Also proposed is the idea of process clone that can be used to

effectively remove program-order recovery dependencies among successive group

checkpoints and thus to stop inter-group recovery spread.

Distributed executions exhibit locality of message interactions. Such locality

originates from resolving distributed dependency localization via message passing, and

appears as a hierarchical 'region-transition' pattern. A bottom-up approach has been

proposed to identify those regions, by detecting popular recurrence patterns from

individual processes as 'locality intervals', and then composing them into 'locality

regions' based on their tight message coupling relations between each other. Experiments

conducted on real-life applications have shown the existence of hierarchical locality

regions and have justified the feasibility of this approach.

Performance optimization of group checkpoint strategies has to do with their uses of

locality. An abstract performance measure has been proposed to properly integrate both

runtime overhead and failure recoverability in a region-wise manner. Taking this measure

as the optimization objective, a greedy heuristic has been introduced to decompose a

given distributed execution into optimized regions. Analysis implies that an execution

pattern with good locality leads to good optimized performance, and the locality pattern

itself can serve as a good candidate for the optimal decomposition. Consequently,

checkpoint protocols have been developed to efficiently identify optimized regions in

such an execution, with assistance of either design-time or runtime knowledge.

iv

Acknowledgements

First and foremost, I would like to express my sincere gratitude and appreciation to my

supervisors Dr. Hon F. Li and Dr. Dhrubajyoti Goswami, for their continuous support to

my Ph.D. study, for their patience, motivation, enthusiasm, and immense knowledge, and

for their valuable guidance in all the time of this research as well as my thesis preparation.

Besides my supervisors, I am grateful to the rest of my thesis committee: Dr.

Azzedine Boukerche, Dr. Ferhat Khendek, Dr. Sudhir P. Mudur, and Dr. Juergen Rilling,

for their insightful comments and suggestions.

Also, I am indebted to my parents for their constant understanding as well as

encouragements throughout my life.

My special thanks also go to my fellow labmates in Distributed Systems Laboratory

of Concordia University, for all the stimulating discussions and the memorable time that

we had together.

Last but not the least, I would like to thank all my friends in Concordia and Montreal

who has directly or indirectly helped me, by any means, to make this thesis possible.

V

Contents

List of Figures viii

List of Tables x

Chapter 1 Introduction 1

1.1 The problem 4

1.2 Ideas and Contributions 7

1.3 Thesis Organization 11

Chapter 2 Distributed Checkpoint and Recovery 12

2.1 Model and Consistency 13

2.1.1 Consistent Global Checkpoint 13

2.1.2 Always-No-Orphans Consistency 17

2.2 Checkpoint-Based Recovery 18

2.2.1 Independent Checkpointing 19

2.2.2 Coordinated Checkpointing 20

2.2.3 Minimal Checkpoint Coordination 23

2.2.4, Communication-Induced Checkpointing 25

2.3 Log-Based Recovery : 27

2.4 Summary 29

Chapter 3 Group Checkpoint and Recovery 31

3.1 Quasi-Atomic Recovery 32

3.1.1 System Model 33

3.1.2 Proper Recovery Behavior 36

3.1.3 Quasi-Atomic Recovery Block 38

3.2 Checkpoint Dependency and Recovery 42

3.2.1 Checkpoint Dependency Graph 42

3.2.2 Recovery with CDG 46

3.3 Group Checkpointing 51

3.3.1 An Example Group Checkpoint Protocol 53

3.3.2 Group Checkpointing and Coloring 60

3.3.3 Atomic and Non-Atomic Group Checkpoint 64

3.3.4 Cloning-Based Recovery ...71

vi

3.3.5 Checkpointing for Bounded Recovery 74

3.4 Remarks 81

Chapter 4 Locality of Message Interactions 84

4.1 Traditional Locality of Reference 87

4.1.1 Localization of Recurrences 88

4.1.2 Recurrence Patterns 91

4.2 Origination of Interaction Locality 95

4.3 Identifying Interaction Locality 98

4.3.1 Locality Interval 101

4.3.2 Important Coupling and Locality Region 105

4.3.3 Identification of Locality Regions 108

4.4 Interaction Locality in Distributed Applications 112

4.4.1 Hypotheses and Test Cases 113

4.4.2 Application Traces 116

4.4.3 Experimental Results and Analysis 119

4.5 Remarks 133

Chapter 5 Locality-Driven Checkpoint and Recovery 136

5.1 Performance of Checkpoint and Recovery 138

5.1.1 An Abstract Performance Measure 140

5.1.2 Towards Performance Optimization 144

5.1.3 Interaction Locality and Performance Optimality 148

5.2 Identifying Locality Regions for Group Checkpointing 152

5.2.1 With Design Time Assistance 154

5.2.2 Via On-The-Fly Detection 160

5.3 Design Choices for Checkppint Protocols 166

5.3.1 Atomic Group Dismiss 167

5.4 Remarks 170

Chapter 6 Conclusions and Future Work 172

6.1 Conclusions 172

6.2 Future Work 175

Bibliography 177

vii

List of Figures

Figure 2.1 Consistent and inconsistent states 14

Figure 2.2 Transitless and strong checkpoints 16

Figure 2.3 An example of domino effect 20

Figure 3.1 An example behavior a of a distributed computation 34

Figure 3.2 An example behavior with failure and recovery 36

Figure 3.3 Checkpoint Dependency Graph for distributed execution 44

Figure 3.4 Deterministic recovery of behavior fragments 47

Figure 3.5 Group checkpoints for overlapped protocol sessions 57

Figure 3.6 Checkpointing with the AGC protocol 67

Figure 3.7 Checkpointing with the NGC protocol 70

Figure 3.8 Checkpointing with the BAGC protocol 78

Figure 4.1 An example reference string from a program behavior 88

Figure 4.2 Locality behavior observed during program execution [Den05] 89

Figure 4.3 Stack distance and bounded locality intervals over a reference sting 90

Figure 4.4 Hierarchy of all locality intervals in an interaction string Si 103

Figure 4.5 An example of mismatch between locality intervals 110

Figure 4.6 Work flow of agent-based e-commerce application 117

Figure 4.7 Work flow of agent-based manufacturing process application 118

Figure 4.8 Stack distance distribution for buyerl of e-commerce application 120

Figure 4.9 Stack distance distribution for all agents of e-commerce application 121

Figure 4.10 Stack distance distribution for all agents of manufacturing process application 122

Figure 4.11 Properties of QLI's detected in buyerl's lifeline of e-commerce application 122

Figure 4.12 Properties of QLI's detected in marketl's lifeline of e-commerce application 124

Figure 4.13 Properties of top-level QLI's from agent lifelines of e-commerce application 125

Figure 4.14 Properties of top-level QLI's from agent lifelines of manufacturing process application 126

Figure 4.15 Event association with primary important coupling for e-commerce application 127

Figure 4.16 Event association with primary important coupling for manufacturing process application ... 127

Figure 4.17 Size and internal message ratio of locality regions detected in e-commerce application 128

Figure 4.18 Size and internal message ratio of locality regions in manufacturing process application 129

Figure 4.19 Distribution of internal messages over locality regions in different sizes for e-commerce

application 130

Figure 4.20 Distribution of internal messages over locality regions in different sizes for manufacturing

viii

process application 131

Figure 4.21 Distribution of internal message ratio for locality regions at different levels from e-commerce

application < 132

Figure 4.22 Distribution of internal message ratio for locality regions at different levels from manufacturing

process application 133

Figure 5.1 An example recovery region with logical clock labeling 142

Figure 5.2 Checkpointing with the oAGC protocol 159

Figure 5.3 Checkpointing with the dNGC protocol 164

Figure 5.4 An example execution with failure 166

Figure 5.5 An example of atomic group dismiss 168

ix

List of Tables

Table 4.1 Information about two example applications in different scales 119

Table 4.2 Statistics on primary important coupling in different scales 128

Table 4.3 Statistics on locality regions in different scales 128

Table 4.4 Statistics on hierarchical locality regions 132

x

Chapter 1

Introduction

Distributed systems have gained wide popularity in many application areas, due to the

increasing demand for many of their new features like high reliability and scalability.

Typical examples are distributed multi-agent systems [SL09], such as those designed for

e-commerce, network management, supply-chain management and distributed constraint

optimization [WGP03, MLY06, Mei08]. In such systems, agents are autonomous objects

that interact with each other via message passing [SDP+96, AL98, LiuOl]. An agent can

perform many of its tasks, independently or through message coordination with other

agents. A multi-agent system is hence a special distributed system with mission-driven

agent behaviors. This thesis takes such systems as the default objects of study.

Role-based models [Ken98, KenOO, SE05] are useful to understand the abstraction of

agent interaction and coordination. As a specification tool for agent design, it provides a

means to decompose and then distribute tasks among agents. An after-decomposition task

can be accomplished by involved agents via coordination. The roles played by an agent

correspond to its potential behaviors and meanwhile indicate its partners, especially in

terms of interactions. In general, an agent can take one or several roles simultaneously,

which complicates the resulted runtime behavior. On the other hand, an agent can take

different roles at different time. Relationships between specific roles played by agents can

be modeled as protocol diagrams [OPBOO, BMOOl, OMGQ3].

1

Multi-agent systems are usually more complicated than other distributed systems,

due to the following properties: i) a multi-agent system usually consists of many agents

that are distributed in different hosts, involving a large number of interaction messages

among each other; and ii) an agent may autonomously make different decisions on

performing its roles in different situations, making its behavior more unpredictable. Such

increased complexity as well as unpredictability has put more challenges on system

design and maintenance for distributed agents.

Fault-tolerance is an important design objective of distributed systems. At run time,

an application agent is a distributed process that might crash due to many reasons. The

ability to tolerate such failures will be an attractive feature of multi-agent systems.

Various studies have been made on fault-handling as well as fault-tolerance for such

systems, and corresponding strategies have been proposed in the literature from different

perspectives. For example, an agent system could have special sentinel agents [Hag96]

that guard some predefined functions or system states by monitoring behaviors of other

agents. Faults at those suspected points can then be easily detected and corrected.

Alternatively, an open agent society could have public exception handling services

[KRD03] for agents. This creates a layer of specialized fault-handling capability that is

efficient but requires agent designers to make use of them. In some cases [KCLOO],

important agents such as broker agents can form a team so that team-mates can substitute

and restart one another in case of member crash. These approaches work well for

specialized agent systems but will become expensive when applied to large-scale multi-

agent systems. In addition, they are not general enough to provide application-transparent

fault-tolerance. Besides, there are also fault-tolerant frameworks [SSS+99, PPGOO,

MBS03, HSP05] that provide development support and runtime environment for agent

applications. However, they only focus on fault-tolerance features of specific aspects

2

such as mobility, and do not provide support for fault-tolerance of general application

agents. This thesis aims to develop an application-transparent fault-tolerance

methodology that can be used generally for all distributed systems. To achieve

application-level transparency, a failure-free distributed kernel is assumed to sit aside

each agent, taking care of all fault-tolerance actions for that agent.

As an add-on to the underlying distributed system, a fault-tolerant strategy is

expected to enhance system reliability without significantly impacting its performance.

Process replication [GS99, GFB05] is a useful technique to achieve fault-tolerance,

especially for those storage-intensive or service-oriented applications. However, this

technique is not adequate for many of other agent-based systems, due to their severe

requirements on computational resources, memory occupation, etc. Checkpoint and

rollback-recovery [KT87, EAW+02] use another strategy to provide fault-tolerance: a

checkpoint is taken as a process snapshot from which the process can reset its local state

and resume its execution upon failure. This is a more generic and flexible strategy, as it

turns a failure into the temporary unavailability of some process(es) with certain cost of

stable storage. So far two categories of checkpoint and recovery strategies have been

proposed. In log-based recovery [SY85, AER+99], events of message interactions are all

logged and upon failure related messages will be replayed to deterministically reincarnate

the failed process. Checkpoints are taken only to trim the storage cost of message log. In

recovery, only a few (and usually just one) processes have to be rolled back. The

disadvantage is that, logging every message is expensive in terms of both runtime

overhead and storage cost, especially for those communication-intensive applications.

Also, to ensure that a faulty process's behavior with respect to the rest of the system will

remain the same, non-deterministic events must also be recorded at run time and be

enforced during process reincarnation. In contrast, checkpoint-based recovery [TS84,

3

KT87, LB88] relies on well-designed algorithms to take coordinated checkpoints. Upon

process failure a consistent recovery line [Ran75] is formed based on the most recent

coordinated checkpoint. Subsequently all relevant processes will be rolled back and the

system will be restored to a globally consistent state. Runtime performance in this case

will become much better as there is very little need for message logging as well as

replaying. However, global checkpoint coordination still incurs runtime overhead in both

space and time. In addition, it is possible that the failure of a single process leads to a

global recovery of all processes, which is disastrous for large-scale distributed systems.

Since the introduction of the above strategies, various improvements have been

proposed, aiming at runtime optimization of (i) the size of message logs and checkpoints,

and (ii) synchronization delays of message logging or checkpointing. For example, strong

checkpoints [HNR99] form recovery lines that do not contain messages in transit, which

eliminates the necessity of message playback at recovery time. Optimistic logging [SY85]

records messages in a non-blocking manner by taking the risk of involving other

processes into recovery. Non-blocking checkpoint protocols [CL85, CS98] reduces the

coordination latency in the underlying application with the cost of extra coordination

messages. Complicated algorithms are employed in communication-induced checkpoints

[MS96, AER+99] and causal logging [Alv96], for the purpose of relaxing the checkpoint

coordination or message synchronization requirement. From another perspective, object-

based checkpointing [THT98] distinguishes "influential messages" that change object

states from other messages, making it possible to use an inconsistent global state as a

recovery line.

1.1 The problem

A multi-agent system usually consists of a large number of agents as well as interaction

4

messages that are dispersed throughout the network. Existing strategies for checkpoint

and recovery are not favorable in such a large-scale system. For example, traditional log-

based recovery is expensive due to the large amount of agent application messages that

need to be logged. Although optimistic logging [SY85] or causal logging [Alv96] can be

used to improve the runtime performance, it is inevitable but meanwhile undesirable to

record all message events and non-determinisms. Moreover, it is still possible to have

unexpected recovery situations due to the unpredictability of agent behaviors. On the

other hand, coordinated checkpointing incurs global efforts in both checkpoint

coordination and failure recovery. The large number of agents hence involved can lead to

significant blocking of runtime execution and unnecessary rollback of application

progress. Certain checkpoint protocols [KY87, CS98, AER+99] are designed to take

partial rather than global-wise consistent checkpoints, in order to minimize the

coordination efforts. However, since checkpoints can be initiated arbitrarily, a recovery

might still involve many processes if some checkpoints are taken at inappropriate points

of execution. The resulted situation is very similar to the one where independent

checkpointing causes domino effect [Ran75].

It is clear that existing checkpoint and recovery strategies are designed for two

different application situations. Checkpoint-based strategies have advantages in runtime

performance but suffer from uncontrollable global recovery effect, therefore are better

used in computation-intensive systems with rare failures. Log-based strategies preserve

good recoverability but greatly harm runtime performance, and hence are more applicable

to communication-based collaborative systems. When applied to a multi-agent system,

these strategies will introduce either too much runtime overhead to the failure-free

execution, or too much recovery effort upon failure. In fact, the large-scale-ness of such a

system decides that it is not affordable to go to any of these two extremes by sacrificing

5

the other aspect of system performance. Instead, an appropriate checkpoint and recovery

strategy should be able to flexibly trade off between, and if possible to efficiently

integrate both of, the runtime performance and the failure recoverability.

This thesis aims at providing a general and efficient checkpoint and recovery solution

for large-scale distributed agent systems, with both affordable runtime overhead and

controllable recovery effect. Such a fault-tolerant solution will distinguish itself from

existing ones through the following features: i) it will serve as a part of the system kernel

and will be able to tolerate crash failures of any application agent without any

intervention from developers; ii) it will work efficiently with distributed systems in

different scales, especially those large-scale multi-agent systems; iii) it will improve the

system efficiency at both run time and recovery time; iv) it will provide fine-grained

performance tuning in terms of runtime overhead and recovery cost. General-purpose

checkpoint and recovery solutions proposed so far do not have good scalability and hence

are not able to achieve performance improvement at both ends. Furthermore, none of

those solutions provides a quantitative measuring or adjusting approach that can be used

for optimizing system performance.

Proposing the above solution raises challenging issues to be addressed in this thesis.

In distributed systems, message interactions create dependencies that often spread across

processes. As a result, tracking and restoring such dependencies require global-wise

coordination and recovery. Also, their removal requires proper handling (e.g., logging and

replaying) of corresponding messages with considerable overhead. The necessity of so

doing originates from the correctness requirement of rollback recovery. In general, a

message dependency has to be taken care of in either way, incurring different kinds of

overhead. The target of reducing overhead at both ends naturally gives rise to a hybrid

strategy with less intensive message logging and localized coordination as well as

6

recovery. This in turn requires selectively logging certain parts of message dependencies

and meanwhile tracking as well as restoring the rest. Existing strategies are based on

unnecessarily tight requirements such as globally-consistent recovery line [Ran75] and

individually-consistent process state [SY85]. New strategies with promising performance

will rather encourage a carefully-revised theory of checkpoint and recovery, in particular,

a relaxed requirement that accommodates selective processing of performance-related

dependencies. Also, since there are so many possibilities to decide the set of messages to

be logged, a critical issue is how to find the one with the optimized performance. Further

study requires proper modeling of overall performance during both checkpointing and

recovery, formulation of the optimization problem, and development of algorithms

towards the optimum solution. Finally, there is also the need of designing various

protocols that can manage checkpointing and recovery actions with respect to the

optimized performance.

1.2 Ideas and Contributions

The way of handling message dependencies is directly related to the system performance.

Runtime overhead and recovery cost vary largely with the pattern of message interactions.

However, existing checkpoint and recovery strategies have significantly ignored its

importance. For example, coordinated checkpointing [KT87, EAW+02] was initially

proposed to avoid the domino effect [Ran75] introduced by independent checkpointing. It

forces a simple and uniform policy that globally tracks and restores all message

dependencies. The resulted system has a fixed overhead of global coordination and

recovery effect, which is independent of the actual pattern of message interactions.

Meanwhile, this eliminates the possibility of having improved performance by taking

checkpoints at proper locations. Log-based protocols force another uniform policy that

7

removes all message dependencies. There are also checkpoint protocols [KY87, CS98,

AER+99] that are developed to minimize coordination efforts by allowing partial

coordinated checkpoints. Since these partial checkpoints are not coordinated with each

other and their locations could be arbitrary, it is possible that message dependencies will

spread among these independent partial checkpoints and cause similar domino effects

upon failure. All the above indicates the possibility as well as the necessity of improving

performance from the perspective of studying message dependency patterns.

In a distributed system, correct rollback recovery requires proper maintenance of all

failure-affected dependency relations. The purpose of checkpointing as well as logging is

to pre-record sufficient dependency information for future use. From this perspective,

both runtime overhead and recovery cost can be measured by the quantity of dependency

relations being involved. Consequently, the actual dependency pattern of a distributed

execution can create big differences in these two aspects of performance, due to the

variations and complexity introduced by the large number of processes and messages.

Since all processes execute sequentially and the corresponding program-order

dependencies are just regular total orders, the dependency pattern of a distributed

execution is mostly based on the pattern of message interactions.

Observations on real-life multi-agent applications have shown considerable signs of

message interaction patterns, where messages and processes tend to localize in different

ways. In particular, a process over a time period only interacts with a subset of processes

rather than with all processes of the system. For example, in an agent-mediated e-

commerce auction system [GMM98, GW03], a bidder agent might frequently interact

with a rather exclusive subset of agents including a buyer, an auctioneer and other

mediators until an auction concludes. During the auction, the various participating agents

have lifelines that are coupled together and form a message-intensive sub-region in space

8

and time. Moreover, during an execution of the auction system, messages are mostly

localized within different sub-regions and there are relatively fewer messages in between.

In fact, many distributed applications exhibit similar regions of messages, in different

forms.

This locality phenomenon can be tracked back to agent design as well as

development. Agent applications are role-oriented. Each role played by an agent defines

its position, personality and interaction capability, which actually demonstrate its

"working set" [Den76] of interactions for a certain period of time. Hence agents are

highly likely to exhibit locality in terms of interactions, in both space and time. This

knowledge of working (locality) set, which actually demonstrates the agent interaction

pattern, can be exploited to guide the design of efficient checkpoint and recovery

strategies, in order to improve the runtime performance and recoverability of fault-

tolerant multi-agent systems. In particular, a number of processes, which are closely-

coupled for a period of time via frequent message interactions, often form a space-time

sub-region that contains most of messages exchanged among them. In fact, an execution

of distributed applications usually observes such distinct 'locality regions', covering

majority of their message interactions. Since each region involve only a few processes of

the whole system, these processes can be grouped together to take a coordinated

checkpoint around the region. Such a group-wise checkpoint in turn has only localized

coordination as well as recovery effect. On the other hand, locality regions are almost

disjoint from each other as there are relatively few messages in between. Therefore it is

affordable to selectively log the inter-region messages so as to remove the corresponding

dependency relations among groups. Locality of message interactions hence makes it

possible to achieve both localized recovery effect and reduced logging overhead in large-

scale distributed agent systems.

9

Based on the above idea, this thesis has developed results in the forms of both

theories and techniques, detailed as follows.

(a) Group checkpoint and recovery. A new theory of Quasi-Atomic Recovery is

formulated and it accommodates both global and individual consistencies, providing

the correctness foundation for the new locality-driven checkpoint and recovery

strategies. A Checkpoint Dependency Graph (CDG) model captures the effective

dependency relations among checkpoints, and hence simplifies the design as well as

the understanding of new checkpoint protocols. The strategy of group checkpointing

and selective logging is properly developed, and a new technique based on 'process

cloning' is also introduced to properly handle program-order dependency relations

that might exist between group checkpoints during recovery. Various group

checkpoint protocols featuring strong-ness, atomicity, non-atomicity, and A>bounded-

ness are designed, providing efficient trade-offs between flexibility and performance.

(b) Locality of message interactions. The locality phenomenon of message

interactions is first studied from the perspective of distributed program design. Its

origination is analyzed in terms of dependency localization via message passing, and

its exhibition is characterized as a hierarchical 'region-transition' pattern in

distributed systems. A bottom-up research approach is then proposed to identify such

regions in a given distributed execution. In particular, a generic notion of 'locality

interval' is developed to capture popular recurrence patterns within individual

process lifelines, and frequent message interactions between such intervals are

modeled as 'important coupling', by which they form a 'locality region' of localized

messages. Experiments conducted on real-life distributed applications justify the

feasibility of the proposed approach as well as existence of the modeled locality.

(c) Locality-driven checkpoint and recovery. Performance optimization of group

10

checkpointing is studied and an abstract performance measure is proposed to capture

both runtime overhead and failure recoverability in a region-wise manner. Using this

measure as the optimization objective, a greedy heuristic is developed to decompose

a distributed execution into its locality regions via region merging. A merging

criterion is reasoned, which implies that performance optimality is related to locality

of message interactions. In particular, a pattern with good locality leads to good

performance, and the pattern itself can serve as a good candidate for the optimal

solution. Strategies as well as checkpoint protocols are developed to detect locality

regions in a given pattern, with assistance of design time or runtime knowledge. In

addition, various design choices for checkpoint protocols are analyzed with respect

to their performance costs, revealing the reasons behind flexibility and performance.

1.3 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 gives an introduction to the

research works proposed in the area of distributed checkpoint and recovery, including the

correctness modeling and consistency theories, and detailed protocols from the two

existing approaches. Chapter 3 presents the new results on checkpoint and recovery

theories as well as techniques, such as Quasi-Atomic Recovery, CDG, selected group

checkpoint protocols, and the idea of cloning-based recovery. Chapter 4 models the

locality phenomenon of message interactions in terms of locality intervals and locality

regions, and verifies the existence of such locality properties in real-life distributed agent

applications. Chapter 5 discusses performance measuring as well as optimization, and

presents strategies that work with the new checkpoint protocols using design-time or

runtime assistance. Chapter 6 summarizes the thesis with a discussion on the future

research directions.

11

Chapter 2

Distributed Checkpoint and Recovery

Checkpoint and rollback-recovery are popular techniques to achieve fault-tolerance in

distributed systems. A recovery is a dynamic manipulation of the original execution

triggered by the unexpected occurrence of a failure. The correctness of recovery is

traditionally based on the consistency of the after-recovery global state.

Refinements of the above consistency lead to two different categories of recovery

strategies. Since any global state of the failure-free execution is naturally consistent by

itself, a simple choice is to make the recovered global state identical as before failure, so

that the resumed execution can continue as if the failure never occurs. Log-based

recovery takes this strategy by making the following piecewise deterministic (PWD)

assumption [SY85]: all non-deterministic events can be identified and logged. By

deterministically replaying the messages logged at run time, a failed process can be

recovered to the same state right before failure. In contrast, checkpoint-based recovery

records recent consistent global states as coordinated checkpoints, which upon failure

will serve as recovery lines [Ran75] and the whole system will be resumed to the most

recent one. With such a strategy, there is no need to log and replay every message, and no

guarantee of deterministic recreation of the original execution as well. The resumed

execution might not proceed exactly as before, but it is still a legal one based on the

program statements.

12

Rollback-recovery requires runtime recording of past information about the failure-

free execution, such as checkpoints and message events. In general, availability of such

information automatically decides the recoverability of a failure, i.e., the minimum

recovery effect, and consequently the set of useless checkpoints to be removed via

garbage collection. Apparently, strategies resulting in better runtime performance are

usually equipped with a complicated recovery protocol, and those suffering from

performance degradation often have a simple recovery protocol.

2.1 Model and Consistency

A distributed (multi-agent) system consists of a set of processes (or agents) that interact

only via messages passing. Message delivery is through reliable channels and takes

unpredictable but finite delay. Each process has a set of totally-ordered local events

including message sending and receiving. For a message m, send(m) and recv(m) denote

respectively its send and receive event. Messages also introduces partial ordering among

events of different processes and the resulted dependencies are captured by Lamport's

happened-before relation (usually denoted as —») [Lam78], Processes (or agents) are

subject to crash failures, in which case it loses its volatile state and stops execution

according to the fail-stop model [SS83]. They have access to a stable storage that can

survive all tolerated failures. Checkpoint and recovery strategies use this device to save

recovery information (i.e., checkpoints, message log, etc.) periodically during failure-free

execution. A generic correctness condition for rollback-recovery has been proposed

informally as follows: "A system recovers correctly if its internal state is consistent with

the observable behavior of the system before the failure" [SY85].

2.1.1 Consistent Global Checkpoint

A global state of a message-passing distributed system is a collection of individual states

13

of all processes and message channels within the system. A global state is said consistent

if when the state of a process reflects a message receipt, the state of the corresponding

sender also reflects sending of that message [CL85]. Figure 2.1 shows an example

distributed system consisting of three processes, p\,pi, and /?3, with two messages m\ and

mi among them. The global state in Figure 2.1 (a) is consistent and it has a non-empty

channel state with an in-transit message m\. The global state in Figure 2.1 (b) is

inconsistent because the local sate of ps reflects receipt of mj but the local state of p i

reflects mi is not sent yet. An inconsistent state violates causality and is only possible in

case of a process failure and a subsequent inappropriate recovery. A correct rollback-

recovery protocol is required to eventually recover the system to a consistent global state.

Legends'.

• Message event

— A p p l i c a t i o n message

J Local checkpoint

Figure 2.1 Consistent and inconsistent states

A local checkpoint is a record of a process state taken at run time. It contains all local

information that is necessary for a process to resume its execution. Similarly, a global

checkpoint can be considered as a recorded global state of the system It usually consists

of a set of local checkpoints, one from each process, but can also involve logs of in-

transit messages as corresponding channel states. A consistent global checkpoint is one

whose corresponding global state is consistent. To guarantee consistency, checkpoint-

based recovery strategies manage processes to take global checkpoints in a coordinated

manner. Upon failure, the recovery protocol will construct the recovery line based on the

most recent consistent global checkpoint and the system state will be restored

correspondingly. Due to the non-determinism of distributed executions, the system might

not proceed as same as before failure. In the above example, if the global state in Figure

Pl c
n 2F r f t Pi El

F r h > Pi c.l J •
(a) (b)

14

2.1 (a) is used as a recovery line, p j could receive mi, before receiving m\ in a resumed

execution.

For a set of local checkpoints, one per process, to form a consistent global

checkpoint, there should be no "orphan message" in the corresponding system state. A

message becomes an orphan if its receive event is recorded but its send event is not, e.g.,

mi in Figure 2.1 (b). An orphan message introduces an explicit ordering pattern between

two local checkpoints, e.g., —» send(m2) —> recv{mi) —> C3 in Figure 2.1 (b). Existence

of orphan message(s) across multiple processes is captured by the generalized notion of

zigzag path [NX95] or z-dependence [CS98]. Intuitively, a zigzag path is a sequence of

messages that establishes an ordering pattern with the same recovery dependency as a

single orphan message between two local checkpoints. As an example, in Figure 2.1 (b),

m\ and m.2 form a zigzag path between c\ and C3. Consequently, there is a recovery

dependency established between c\ and C3. This has the same effect as having a single

orphan message sent after ci and received before C3. It can be proved that orphan

message(s) is observable in any set of local checkpoints that involves a zigzag path. A set

of local checkpoints can form a consistent global checkpoint if and only if there is no

zigzag path between any two local checkpoints.

In-transit messages might exist and sometimes are inevitable when taking a

consistent global checkpoint. Such messages should be logged and replayed for the

purpose of reconstructing the channel state. An extreme example is log-based recovery, in

which case only one process is involved so that its local checkpoint is consistent with

itself and all messages have to be replayed. On the other hand, there is also a notion of

transitless global checkpoint [HNR99], which deserves the property that message logging

can be avoided during checkpointing. A global checkpoint is transitless if there is no in-

transit message in the corresponding global state. Note that orphan messages are allowed

15

in this case, hence a transitless global checkpoint is not necessarily consistent. Figure 2.2

(a) shows such a global checkpoint. If a transitless global checkpoint is consistent, it will

be called a strong consistent checkpoint [HNR99], or simply strong checkpoint. An

example of strong checkpoint is given in Figure 2.2 (b). Strong consistency implies no

necessity of message logging or replaying and consequently efficient checkpoint and

recovery.

Pi'
Pi

Pi'
Pi

Legends:

Message event

Application message P, tp—^ P~ (

(a) (b) J Local checkpoint

Figure 2.2 Transitless and strong checkpoints

Taking consistent global checkpoints usually requires all processes to coordinate

their actions at run time, and consequent global delay causes performance degradation.

This consistency requirement is actually driven by the strategy of global recovery. It is

therefore sufficient but not always necessary for the eventual purpose of recovering the

system into a consistent global state. In other words, inconsistency could be another

choice of checkpointing if there is a way to properly recover the system state from an

inconsistent global checkpoint. For example, in-transit messages need to be logged at run

time so that they can be replayed for recovery. Similarly, orphan messages within

inconsistent global checkpoints also needs proper handling at both run time and recovery

time. In particular, there should be techniques to identify and to discard those orphan

messages during recovery, which might require special logging of certain information of

such messages. In fact, message discard as a technique has been used in specific

applications [BMP+03] and it is possible to adapt it to checkpoint and recovery protocols.

On the other hand, a consistent global checkpoint is not necessarily taken always

global-wise. A process failure might only affect a few other processes, if message

16

dependencies have not yet spread very far since the last global checkpoint. It hence will

be efficient to manage a partial instead of global checkpoint among a subset of processes.

In fact, several checkpoint protocols [KT87, CS98] have been proposed to take such

partial checkpoints for the purpose of minimizing coordination efforts. However, message

dependencies are still possible between these partial checkpoints since they are not

coordinated with each other while being taken. Upon failure, the recovery protocol has to

track all dependencies in order to construct the recovery line efficiently.

2.1.2 Always-No-Orphans Consistency

In contrast to checkpoint-based recovery that focuses on global consistency, log-based

recovery aims at maintaining individual consistency of each process. In particular, a

process execution is modeled as a sequence of deterministic state intervals, each starting

from an event that has non-deterministic timing or computational result [SY85].

Examples of such events include the receipt of a message and an internal event like

random number generation. Note that the sending of a message is determined by the

results of its proceeding events and hence is not a non-deterministic event by itself. Log-

based recovery relies on the piece-wise deterministic (PWD) assumption [SY85], which

claims that any non-deterministic event executed by each process can be identified and

logged as a determinant [Alv96] that is necessary to replay the event deterministically.

For example, the determinant for (the receive event of) a message m includes the message

itself (i.e., both the header and the body) and its receipt (which specifies the original

order of m's delivery). Log-based strategies need to record not only all messages but also

all determinants. In comparison, checkpoint-based strategies only log the in-transit

messages. Upon failure, only the failed process needs to be recovered from its most

recent checkpoint. All subsequent messages will be replayed deterministically afterwards,

and its local state will be restored exactly as before failure.

17

Logging of messages and determinants has specific synchronization requirements. If

a process fails before a message log is committed into a stable storage, the deterministic

recreation of that message will not be guaranteed. As a result, another process might be in

an inconsistent state. For the example shown in Figure 2.1 (a), suppose all messages are

logged except m2. I fp\ rolls back from its checkpoint, p2 will be inconsistent with respect

to other processes. p2 is hence called an orphan process and is forced to rollback with p\.

To avoid such a situation, a general "always-no-orphans" condition [AM98] requires that

for any non-deterministic event e, if the determinant of e is subject to loss (i.e., not

committed into stable storage yet), the processes whose states are depending on e should

keep a copy of its determinant, either independently or collectively. If not, it is possibly to

have an orphan process in case e cannot be regenerated. Refinement of this condition

leads to different logging strategies, which are introduced in Chapter 2.3.

The PWD assumption makes it possible to precisely recreate the system state, and

hence is specifically useful for situations involving un-recoverable units. For example, an

open distributed system can have message interactions with the outside world, which is

usually modeled as an Outside World Process (OWP) [SY85]. Such a process is

independent of the system and is not supposed to be affected by any of its recovery

actions. Messages related to that process should be logged properly and be replayed

deterministically in case of failure. The PWD assumption hence is necessary to separate

recovery spread among processes with the assistance of certain logging strategies.

2.2 Checkpoint-Based Recovery

Checkpoint-based recovery does not log every message or any determinant, and hence

avoids the corresponding runtime latency. Instead, it employs efficient checkpoint and

recovery protocols to restore the system into a past consistent global state. Checkpoints

18

from different processes can be taken independently or coordinately in various manners.

Consequently, a process failure will lead to recoveries in different scales.

2.2.1 Independent Checkpointing

In general, a (local) checkpoint is a snapshot of a process state by which the process can

reset its local state and resume its execution. The decision of taking a local checkpoint

can be made independently by each process. Independent checkpointing [BL88] is simple

to implement, as each process has the maximum autonomy to decide where to checkpoint.

Also there is no additional effort or latency introduced by either message logging or

coordination with other processes. However, there are several undesirable disadvantages:

i) it is sometimes inevitable to have domino effect during recovery, which could force the

whole system to restart from the beginning; ii) it can create useless checkpoints that will

never be a part of consistent state and hence will never be used in any recovery; iii) each

process has to keep multiple checkpoints and check their usefulness from time to time,

causing increased storage and effort for garbage collection.

The autonomous nature of independent checkpointing requires special treatment of

recovery dependencies in order to find the recovery line. At runtime, message interactions

create dependency relations among checkpoints from different processes. Such

dependency information can be piggybacked with the corresponding message and is

recorded by the receiver for recovery use. Upon failure, the recovering process will

calculate the most recent consistent recovery line by requesting dependency information

from all other processes. In particular, rollback-dependency graph [BL88] and checkpoint

graph [Wan93] have been proposed to help tracing the recovery dependencies among

checkpoints via reachability analysis. These two graphs have similar semantics and

equivalent output of the recovery line. On the other hand, checkpoints preceding the most

recent recovery line are no longer useful, and therefore should be removed from time to

19

time. This garbage collection procedure can also be applied to find useless checkpoints.

Depending on the pattern of independent checkpoints and message interactions, a

recovery might involve different numbers of processes. The domino effect [Ran75] is the

most unfavorable recovery situation, as it can result in huge waste of computational effort.

As shown by the example in Figure 2.3, upon failure, p\ rolls back to its most recent

checkpoint cn. Since no message is ever logged, in order to find a consistent recovery

line, pi rolls back to C22, which in turn triggers p\ to rollback from c\2. This propagation

never stops until both processes rollback to the beginning. All work that has been done so

far is lost and all checkpoints that are taken previously hence become useless. The

autonomy of individual decision-making eliminates the necessity of checkpoint

coordination, but on the other hand ignores the impact of message dependency pattern.

Unlike log-based recovery, no action is taken at runtime to control the dependency spread.

As a result, independent checkpointing has uncontrollable recovery effect.

2.2.2 Coordinated Checkpointing

To avoid domino effects as well as useless checkpoints, strategies are proposed to

synchronize the checkpointing actions of processes in order to take a consistent global

checkpoint. Such a checkpoint is expected be an on-the-fly record of a valid global

system state, which is naturally consistent by itself. This in turn requires every process to

take a local checkpoint and each in-transit message to be logged as a part of the

corresponding channel state. As introduced in Chapter 2.1.1, to guarantee the consistency

of a global checkpoint, orphan messages have to be avoided and there should be no

Legends:

• Message event

— A p p l i c a t i o n message

Local checkpoint

Figure 2.3 An example of domino effect

2 0

zigzag path between any two local checkpoints. In particular, since an orphan message

leads to an ordering pattern, the checkpointing actions of any two processes should be un-

ordered with respect to all in-transit messages between them. Usually an application-

transparent checkpoint and recovery protocol is superimposed on top of the underlying

computation and the consistency requirement is only regarding application messages. As

a result, the synchronization of un-ordered checkpointing actions can be achieved with by

using extra system-level messages.

A simple approach to take coordinated checkpoints is to suspend the normal

execution until the checkpointing is done [TS84], An initiator process can stop its

execution and send a request to every other process, which in turn will stop its execution,

flush all communication channels, take a tentative checkpoint, and send a feedback to the

initiator. After collecting feedbacks from all processes, the initiator will broadcast a

commitment for them to change their tentative checkpoints into permanent and resume

their execution. Since message channels are not assumed as FIFO, this protocol uses

CRC vector to make sure the channel-flushing procedure properly records all in-transit

messages. This two-phase coordination is based on explicit system-level messages.

Consistency is guaranteed by instant blocking of execution upon receipt of a checkpoint

request. At runtime, each process keeps only one permanent checkpoint in stable storage.

There is no useless checkpoint and the storage overhead is minimal. Garbage collection

also becomes very simple as the old global checkpoint is removable once a new one is

taken. The main disadvantage is, the failure-free execution is totally blocked during

checkpoint coordination and the consequent large latency will harm the performance.

A global checkpoint can be also taken as a distributed snapshot [CL85] in a non-

blocking manner. This approach assumes that all channels are in FIFO order, for both

application- and system-level messages. In the beginning, the checkpoint initiator takes a

21

local checkpoint, and sends to each of its neighbors a special marker message, which will

be also forwarded by the receiver to its other neighbors. A local checkpoint will be taken

upon the first time of receiving a marker message, and application messages received

afterwards will be recorded as corresponding channel states. Such recording will not stop

for a particular channel until a marker message is received from that channel. In this

protocol, FIFO-ness of channels guarantees completeness of channel state as well as

consistency between local checkpoints, and also eliminates the necessity of blocking the

failure-free execution. Global-wise synchronization is avoided as overhead is only

created while a local checkpoint is being committed to stable storage. Further

performance improvement towards reducing the stable storage contention is proposed as

staggered checkpointing [Vai99, MJY+05], which employs a refined version of

distributed snapshot to take a consistent "logical checkpoint".

Instead of allowing just one initiator at a time, any process can autonomously

perform a global checkpoint initiation, by taking a tentative checkpoint and then logging

messages received thereafter [JLM08], Knowledge can be spread asynchronously via

message piggybacking to inform processes the current status about each other. A tentative

checkpoint will be finalized into an effective checkpoint if a process collects enough

knowledge to realize that every other process already establishes a tentative checkpoint.

Therefore in this protocol, a finalized checkpoint actually consists of a tentative

checkpoint, which is the local process snapshot, plus a sequence of messages logged

afterwards. Consistency of global checkpoint cut is guaranteed by forcing a receiver to

finalize its own checkpoint before receiving a message sent after the sender's finalization.

This protocol is asynchronous but its convergence of involving every process depends on

the actual message pattern. To force the convergence of global checkpoint finalization,

additional control mechanism can be implemented via explicit kernel messages.

22

Coordinated global checkpoint is usually simple and synchronous. Global-wise

synchronization involves all processes at run time as well as recoveiy time, and is hence

not appreciated in many circumstances. However, due to the simplicity of implementation,

it is still applicable under certain situations such as for clusters [BP07], mobile computing

[Kum08], and grid computing [JKN06].

2.2.3 Minimal Checkpoint Coordination

In general, a global state of a distributed system involves every process as well as every

non-empty message channel. As a result, coordinated checkpoint strategies usually force

all processes to synchronize their checkpointing actions. However, this is a sufficient but

not always necessary condition from the perspective of maintaining consistency. For

example, if since last global checkpoint a subset of processes never interact with the rest

of processes, then a consistent snapshot of this subset is always consistent with any

consistent snapshot of the rest world. Consequently, this subset of processes can take a

partial coordinated checkpoint involving only themselves, instead of also enforcing all

other processes to checkpoint together. The coordination effort hence can be reduced

from global-wise to group-wise. This approach is essentially captured by the notion of

"min-process" checkpointing [CS98, CS03], which requires all processes that develop z-

dependency relations to coordinate their checkpointing actions. A process p z-depends on

q if there is a zigzag path from p to q since their last checkpoints. Obviously the above

requirement avoids inconsistency among such z-dependents. It can be proved that "min-

process" checkpointing only involves a minimum number of processes in taking each

coordinated checkpoint. Corresponding protocols hence have the advantage of minimal

coordination effort. On the other hand, it also makes sense that all collaborating processes

should save their periodic effort by taking a coordinated checkpoint together.

It has been proved that non-blocking min-process protocol doesn't exist [CS98]. A

23

blocking min-process protocol can employ a two-phase commit procedure for both

checkpointing and rollback-recovery [KT87]. In the first phase, the initiator takes a

tentative checkpoint and sends checkpoint requests to other processes that z-depends on it.

Upon receiving a request, a process will take a tentative checkpoint and forward the

request to its own z-dependents. After the initiator learns all such processes have taken

their tentative checkpoints, in the second phase it will propagate its decision of turning all

checkpoints into permanent. Upon failure, the failed process will employ the similar

procedure to locate all its z-dependents and request them to recover together. All related

processes have to be blocked until the second phase is completed. To avoid execution

blocking, a checkpoint sequence number csn can be used to facilitate the two-phase

commit procedure. It is piggybacked by a sender process with each of its application

messages, playing a role similar to the marker message in distributed snapshot [CL85]:

each process receiving a message with a csn greater than its own will take a "forced"

checkpoint [CS98, CS03]. Such a forced checkpoint is being taken for the purpose of

avoiding potential inconsistency, and however might not be always necessary. Therefore

a process needs to wait for a checkpoint request propagated from the initiator, before it

can decide to turn a forced checkpoint into tentative or to discard otherwise. Since z-

dependency is transitive but not always .causal, a process p z-depending on q might not be

able to know the existence of such a dependency only by comparing the csn's that is

causally piggybacked with application messages. Consequently, non-blocking protocols

have to involve a number of extra processes into the checkpointing procedure.

Min-process checkpointing protocols take partial rather than global coordinated

checkpoints, and hence have advantage in terms of minimum or reduced coordination

effort as well as improved runtime performance. However, they have disadvantages at

recovery time: i) z-dependency relations useful for recovery have to be completely rebuilt,

24

as those exploited during the checkpointing procedure cannot be reused; ii) recovery

might still involve a large number of processes and there is no control of the recovery

effect at all. This is because in these protocols, checkpointing and rollback-recovery are

using two different kinds of z-dependency relations: the former is based on the past

message interactions, while the latter is based on the future communication pattern. At

runtime, there is no coordination between the groups of partial checkpoints, and hence no

management of recovery dependencies. As a result, recovery spreads with the growth of

message interactions. On the other hand, since checkpoints can be initiated arbitrarily, it

is possible to take checkpoints at inappropriate points of execution and to cause too many

processes involved in recovery unnecessarily.

2.2.4 Communication-Induced Checkpointing

Recent efforts [Tsa03, TM05, SGP+05, SG06] of the distributed checkpoint community

have been mainly spent on exploiting and evaluating the idea of Communication-Induced

Checkpointing (CIC). Compared with the completely autonomous independent

checkpointing and totally coordinated global checkpointing, CIC can be considered as a

quasi-synchronous strategy. It allows autonomous checkpoints and also forces

coordinated checkpoints, in order to avoid domino effect as well as useless checkpoints.

This is based on the observation that a local checkpoint becomes useless once it is

involved into a z-cycle, which is a zigzag path that begins and ends with the same

checkpoint [HMN+97]. Avoiding useless checkpoints requires preventing or breaking the

formation of z-cycles. CIC protocols are hence developed to take forced checkpoints in

addition to autonomous checkpoints before z-cycles can be actually formed.

There are two approaches in general to avoid z-cycles. One approach is to associate a

timestamp function with each checkpoint. For example [BGS84], each process can

manage a logical clock with its local checkpoints such that: i) successive checkpoints

25

have increasing clocks; ii) clocks are piggyback with messages; and iii) upon receiving a

message, a process takes a forced checkpoint if the piggybacked clock is greater than its

own, and also updates its own clock accordingly. Further information can be piggybacked

to support more complicated protocols [HMR97a], e.g., for the purpose of reducing the

number of forced checkpoints. It is clear that the set of checkpoints with the same logical

clock forms a consistent state. Instead of using timestamps, the other approach is to detect

all suspected communication and checkpoint patterns and to prevent them by taking

forced checkpoints beforehand [BQC98], It has been proved that these two approaches

are equivalent in terms of creating the same set of forced checkpoints [HMR97b],

CIC protocols are non-blocking as the coordination information is piggybacked with

application messages and hence no latency is introduced. Since CIC protocols allow

certain degree of autonomy, the application can choose to do checkpointing whenever it

incurs small overhead, in order to get better runtime performance. On the other hand, if

autonomous checkpoints can be taken as initiation of regular coordinated checkpoints,

then CIC is very similar to min-process checkpointing, as they are both induced by

communications and their checkpoints do not cause global-wise coordination

unnecessarily. Having the above advantages, CIC protocols pays the prices of increased

.application message size due to information piggybacking and checkpoint committing

latency before message processing. In addition, not all z-cycles are on-the-fly trackable

[BHR01], and it is impossible to add a minimum number of checkpoints for removal of

all z-cycles [ABL+07], Inevitably, each process has to keep several checkpoints on stable

storage, and extra forced checkpoints are possible even sophisticated mechanisms are

employed. Although CIC protocols seldom cause creation of global checkpoints, study

has shown that they do not scale well for large-scale distributed systems [AER+99], as

forced checkpoints are intrinsically inevitable due to spread of message interactions.

26

2.3 Log-Based Recovery

In log-based recovery, non-deterministic events such as message delivery are recorded as

determinants [SY85] so that they can be replayed to deterministically resume the

execution of a process upon failure. Checkpoints are created periodically just to trim the

length of message logs and then reduce the recovery time. All log-based protocols require

that upon recovery, there is no orphan process, whose state is inconsistent with the

recovered process. Orphan processes are possible due to loss of message determinants.

Log-based protocols vary in the way how determinants are committed into stable storage.

In particular, they differ in their refinements of the always-no-orphans requirement: if the

determinant of a non-deterministic event is not yet logged, its dependent processes should

keep a copy of its determinant (refer to Chapter 2.1.2).

Pessimistic message logging tries to restrict the scope of dependent processes. A

straightforward strategy is to synchronize the logging of each determinant, and

consequently each process will block its execution upon receipt of every message

[BLL89], This atomicity condition can be relaxed by making the set of dependent

processes of a message to involve its receiver only. All determinants then should be

logged before the effects of their corresponding events can be seen by other processes.

Corresponding protocols hence can avoid the creation of orphan processes by blocking

the sending of a message m until all messages delivered before m are logged [JZ87].

Upon failure, recovery is simply rolling back the failed process to the most recent

checkpoint and replaying all the messages from logs. Since logging a message may take

time, pessimistic protocols can slow down the throughput of interaction-intensive

applications with the overhead of logging every message and the latency of blocking the

execution. Such protocols are pessimistic in the sense that they assume failure occurs

after any non-deterministic event, which is in fact very rare. Alternatively, messages

27

could be logged at sender side and be retrieved from them for playback purpose in case of

receiver failure. A sender might choose to keep messages in its volatile memory or flush

them into its stable storage, with assistance of specific protocols [AAJ06].

In contrast, optimistic protocols [SY85] allow asynchronous logging, with the

optimistic assumption that logging can be completed before failure occurs. Determinants

are spooled into stable storage in a non-blocking manner, and as a result, orphan

processes become possible in case of failure. Such orphan processes will then be detected

and rolled back together to make their process states consistent. The always-no-orphan

condition is not maintained all the time but is finally reached when recovery is complete.

Optimistic protocols take the risk of creating temporary orphan processes to obtain better

performance for the failure-free executions. Consequently, a failure recovery might

involve several processes rather than just the failed one. Optimistic protocols usually

employ complicated mechanism to track dependencies among processes at runtime, and

to decide orphan processes at recovery time. In addition, the recovered execution might

become different from the previous one, due to the rollback of orphan processes and the

fact that message channels are allowed to be unreliable.

There are causal message-logging protocols [Alv96] that neither create orphan

processes upon failure nor block the failure-free execution. They hence have the runtime

performance of optimistic logging and meanwhile the recovery effect of pessimistic

logging. These protocols properly implement the always-no-orphan condition so that,

each determinant is available from either the stable storage or the volatile log of a process

whose state causally succeeds the determinant's event. The logging atomicity then can be

relaxed, because a determinant is always obtainable from other processes even a failure

occurs before its actual commit. In fact, the delivery of a message m will not introduce an

orphan process until the delivery of another message m' that causally depends on m.

28

Therefore, in a causal protocol, determinant of m is piggybacked with m' and is kept by

m's receiver before m' is delivered. In recovery, those parts of logged information will be

retrieved in order to replay m. As long as m is not logged in stable storage, it should be

piggybacked and then propagated with its dependent messages, in order to tolerate

process failures. The moment of output commit hence can be delayed with the cost of

increased message size. Another price to pay is that causal protocols usually require

complicated recovery mechanism to retrieve all logged messages.

The above three logging approaches have different focuses and applications.

Pessimistic logging cares more about safety and recovery effect rather than runtime

performance, and is better for applications with strict recovery requirement and frequent

failure events. In contrast, optimistic logging takes the risk of having large recovery

effects for the return of better performance, and hence is better for performance-oriented

applications. Causal logging combines advantages from pessimistic and optimistic

strategies but avoids their disadvantages, and hence is applicable in many situations.

However, in a distributed system involving a large number of messages, the use of

determinant piggybacking in causal logging might heavily burden the communication

network. Also, since causal logging propagates determinants along with spread of

message interactions, upon failure a recovery might involve a, large scope of other

processes to retrieve the causal information of certain messages. For message-intensive

systems, it is unaffordable to use causal logging as a fault-tolerant solution.

2.4 Summary

In distributed systems, message interactions introduce recovery dependencies among

processes and hence the necessity of tracking or recording them, via checkpoint

coordination or message logging respectively. Since a dependency relation can only be

29

handled one way or the other, the above two approaches have almost contradictive effects

in runtime performance and recovery effect. Checkpoint-based recovery avoids logging

overhead but results in coordination latency as well as poor recoverability. Log-based

recovery has better recovery control but generates excessive performance cost. These

properties are directly from their ways of dependency handling and hence are intrinsic to

their corresponding protocols. Since these two ways contradict each other, checkpoint-

and log-based approaches form two extreme ends of rollback-recovery. As a result, a

distributed system can only take advantages from one end by sacrificing those of the

other. Although quite a few improvements have been proposed at both ends, it is difficult

to find a protocol that features all of their advantages but none of their disadvantages.

Recently, with the dramatic increase of processor speed and network bandwidth,

compared with the relatively less-improved storage access speed, checkpoint and logging

overhead has become the major source of runtime performance cost. A checkpoint-based

recovery strategy is hence more favorable than a log-based strategy. On the other hand,

the ability to interact with the unrecoverable units (e.g. the outside world) makes logging

still valuable in certain situations. However, none of these two strategies are applicable in

a large scale distributed system such as a multi-agent system. Due to the large number of

processes as well as messages being involved, such a 3ystem will suffer from either

uncontrollable coordination and recovery effect, or unaffordable runtime overhead.

Instead, a proper fault-tolerant approach for a large-scale distributed system should have

performance advantages at both run time and recovery time. It is desirable to develop a

hybrid scheme that incorporates both checkpoint coordination as well as message logging.

Obviously this requires a meaningful revision of the two existing approaches, in

particular, a major change to the way of handling different recovery dependencies. Next

chapter gives detailed discussions on this issue and the corresponding technical results.

30

Chapter 3

Group Checkpoint and Recovery

Current large-scale distributed systems appreciate a checkpoint and recovery strategy that

features both affordable runtime performance and controllable failure recoverability. This

is a combination of advantages from the two approaches that have been proposed so far,

namely, checkpoint- and log-based recovery. Analysis in the previous chapter shows that

these approaches are based on different correctness requirements of consistency, and are

using contradictive ways in handling message dependencies. As a result, it is impossible

to simply use these two approaches together to get advantages from both ends.

Thoughts from another perspective give rise to a possibility of harmoniously

combining these two approaches. It is clear that both approaches try to apply a unique

and uniform policy of handling all message dependencies in a system. Checkpoint-based

recovery manages to track all dependencies, and hence has to grow its coordination as

well as recovery effort along with the spread of message interactions. Log-based recovery

tries to record all message determinants, and therefore suffers from huge commit latency

at runtime. More importantly, the uniformity of such policies makes it impossible to have

these two approaches work together. Then an alternative is to selectively change the

handling policy for certain dependencies, i.e., some message dependencies can be

removed via logging, while others are tracked under checkpoint coordination.

Further analysis sheds light on a promising approach of checkpoint and recovery. In

31

general, to reduce the runtime overhead, the portion of messages selected for logging

should be as less as possible. On the other hand, since a coordinated checkpoint can avoid

logging the message interactions that occur after checkpointing, the rest portion of

messages can be covered by the corresponding pre-created coordinated checkpoints.

Objectively, the selective logging policy when applied should effectively separate the

spread of checkpoint coordination as well as recovery. It is hence straightforward that the

expected approach should be able to manage all message interactions into disjoint subsets,

taking a partial coordinated checkpoint for each subset, and subsequently logging the

messages between the subsets. Since each subset involves a group of processes that

checkpoint and recover together, and also apply a policy of only logging messages from

other groups, this approach can be named group checkpoint and recovery.

Following the above idea, the rest of this chapter presents the results from further

development. Chapter 3.1 and 3.2 build the theoretical foundation of the new approach,

including a generic Quasi-Atomic Recovery theory that accommodates all situations of

consistency, and a Checkpoint Dependency Graph model that captures all kinds of

recovery dependencies and also harmonizes different dependency handling techniques.

Chapter 3.3 develops the group checkpoint strategy with details, and also demonstrates

several representative checkpoint protocols. Also introduced is a new recovery technique

based on process cloning, with its use in localizing group recovery. Chapter 3.4

summarizes this chapter and brings out the significance of this research. Remaining

issues include how to meaningfully decide the groups and how to effectively identify

them, which leads to the follow-up study on locality of message interactions in Chapter 4.

3.1 Quasi-Atomic Recovery

This chapter introduces a generic model that captures different correctness requirements

32

of recovery, including those applied to existing techniques such as deterministic as well

as non-deterministic, and single as well as simultaneous recoveries. In particular, the

notions of atomic and quasi-atomic recovery blocks are proposed to capture the subset of

events nullified in a single recovery. It is proved that correctness of multiple recoveries is

guaranteed if a recovery technique ensures well-ordering of corresponding quasi-atomic

recovery blocks [LWG06], This general correctness requirement not only accommodates

both global and individual state consistencies used in checkpoint- and log-based

approaches, but also makes it possible to develop new hybrid recovery strategies that

combine the features of these two. The following discussion uses the traditional

asynchronous model of distributed systems, and the results are applicable to any

distributed system in general, including large-scale ones such as multi-agent systems.

3.1.1 System Model

A distributed system consists of a set of processes P = {/?,- | 0 < i < n) that interact with

one another only through messages. Message delivery is through reliable FIFO channels

and takes arbitrary but finite delay. Given a message m, send(m) and recv(m) denote rris

send and receive event, from its sender and receiver process, respectively. Events of the

same process form a total order, and traditionally ey denotes the/ h event of process /?,-. All

events are assumed to be instantaneous. The set of events from all processes form an

irreflexive partial order under the following happened-before relation [Lam78]: event e

happened before event e' (written as e -» e') if i) e and e' belong to the same process and

e occurs before e', or ii) e is the send event and e' is the receive event of the same

message, or iii) there exists an event e" such that e —» e" and e" —» e'. Given an event e,j

of process the set of values of its local variables immediately after the occurrence of e,y

defines its local state (denoted as Sy) at that time.

33

A behavior a is a partial order (E, —») where E is the set of events that occur during

an execution of a distributed system, and —> is the happened-before relation. For

simplicity, in this chapter a behavior symbol a is used to denote both the corresponding

partial order and its event set E. A distributed computation D is represented by a set of

complete behaviors {£,- \ i = 1,2,...}, each of which corresponds to a complete and correct

execution instance of D. Multiple complete behaviors in D arise when the system exhibits

non-determinism, such as critical race among asynchronous receive events, or the use of

random number generator. Each complete behavior in D is hence distinct. A behavior a is

a prefix of another behavior a ' (written as a < a ') if a is a subset of a ' and a satisfies the

following closure property: if e e a and e' e e a ' then e'e a . A prefix a of a complete

behavior B e D is a partial behavior of D. The prefix closure D* of complete behaviors in

D (i.e., D* = {a | 3 B e D: a < B}) contains the set of all allowable incomplete behaviors

generated from D. Given a < a ' e £>*, y = a ' - a is a midfix of a ' (written as a ' = a • y).

Here, midfix y is an extension for the behavior a in forming a ' .

P\-

Pi
Pi-

- >

- >

(a) Partially-ordered behavior a

Legends:

Local event of a process

Application message

(b) Two possible extensions of behavior a due to message race
Figure 3.1 An example behavior a of a distributed computation

Figure 3.1 (a) shows a behavior a = (en, e22, e^) involving three processes.

34

Upon completing its execution associated with a, process p\ can receive messages from

P2 and p-i in either order due to the presence of message race. As is shown in Figure 3.1

(b), in one case prefix a is extended with a midfix yi = (e12, en) to become a j = a • yi =

(en, e2\, e22, £31, ei2, en), and in the other case a is extended with a midfix y2 = (e\2, en)

to become a 2 = a • 72 = (en, e2i, e22, en, e\2, en). Here ai and a2 have the same event set

but different partial ordering of these events. If the processes terminate after these events,

then each of ai and a2 is a complete behavior of the distributed computation D.

The (final) global state associated with a prefix a , denoted by S(a), is the set of

process states and channel states upon the occurrence of all events in a. Given a ' = a • y,

the initial global state °S(y) of midfix y is also the global state associated with a (i.e., °S(y)

= S(a)). Upon completing the execution associated with prefix a, the processes continue

with one of the possible midfixes starting from global state S(a), e.g., yi and y2 in Figure

3.1 (b), hence °S(y 1) = S(a) = °S(y2). A behavior v i s a midfix of D if there exists some

behaviors a, a ' e D* such that y is a midfix extension of a in forming a ' , i.e., a ' = a • y.

In other words, y is an intermediate behavior that can be used to correctly extend some

behavior of D* to form a new behavior of D*. Therefore, for a failure-free behavior a in

D*, midfix y is a natural extension which is also failure-free. On the other hand, a

behavior y is considered as a midfix of D* as long as-it can extend a in a failure-free

manner. The following Global State Axiom shows an essential property of a midfix in

forming different behaviors with respect to D*.

Axiom 3.1:

Given a midfix y of D and a behavior a e D\ if 5(a) = °S(y), then a ' = a • y e D*.

For a distributed computation D, the global state 5(a) of an incomplete execution a

completely defines what its future behavior (extension) can be, independent of how that

35

global state has been reached from the past. In particular, if y is a midfix extension of

some behavior X * a then, as long as 5(a) = °S(y), y can also be used as an extension of a.

In this case, both A, • y and a • y are behaviors of D*.

3.1.2 Proper Recovery Behavior

The term recovery behavior is used to refer to the observable behaviors of a distributed

computation D in the presence of failure and recovery events. A failure-free behavior

only contains events associated with the application. Assuming application transparent

fault-tolerance, all recovery actions will be taken care of by a distributed recovery kernel,

one per process. A recovery behavior of a computation D is a (failure-free) behavior of D

extended with kernel events. There are three types of kernel actions used in existing

recovery protocols: i) local state reset (to an earlier checkpoint state); ii) message

playback [AM98, BMP03, SY85], and iii) message discard [BMP03].

Pi — m.

Pi

P\ •

Pi"

*
Figure 3.2(a) Behavior B with failure

• i
y a b i \ rz . j f . • x * c — V r "X *c—"T

GCI CT2

Figure 3.2(b) Behavior Z?i with recovery

Pi

Pi I t »v t ! I - - >

Legends:

Local event of an agent

— A p p l i c a t i o n message

^ Agent Failure

+ Reset event

message playback by kernel

^ message discarded by kernel

cti
c I a

a2
Figure 3.2(c) Behavior B2 with recovery

Figure 3.2 An example behavior with failure and recovery

Figure 3.2 (a) shows an example behavior 2? involving two processes p\ andp2 and a

single failure with p2. Message m\ is received but m2 is not. For simplicity, the local states

of the processes are labeled (as a, b, c, x, etc) right after the corresponding local events.

36

Two possible recovery behaviors (B\ and Bi) may occur, as shown in Figure 3.2 (b) and

Figure 3.2 (c) respectively. In Figure 3.2 (b), process p2 recovers independently from a

previous local state x using log-based strategies [SY85, AM98]. Message m\ is replayed

so that p i can reach its local state d just prior to reset, and mi is considered as an orphan

message and is discarded by p\. Figure 3.2 (c) shows another possibility of recovery

where message m2 is discarded by (the kernel of) p2- This is possible when the failure of

pi is detected before m2 is actually sent out.

Inclusion of kernel-level recovery events in a recovery behavior needs to satisfy the

following requirements towards a correct recovery:

Definition 3.1 (Proper Recovery Behavior):

A recovery behavior a is proper if a = a.] • 72 • 73 • 74 • • • • • J2i • 72/+1 • ... • Jik • 72*+1 for

some k > 1 such that:

a. 5"(ai) = S(a2), S{a3) = S(a4), ..., S(a2,-i) = S(a2i), ..., 5(a2W) = S(a2k),

where a, = ai • y2 •...• 7,, for i = 2, 3, ..., 2k;

b. ai e D*, and

C. 73, 75, ..., Y2/+1, ..., y2/t+i are midfixes of D* and hence kernel events are not

contained in these midfixes.

In other words, in a proper recovery behavior a , kernel events are contained only in

isolated midfixes (72, 74, ..., 72/, 72<0- A process behavior extended with such a midfix

is finally brought to its initial state just prior to the midfix. Hence such a midfix serves to

correctly recover a failure. In the previous example, both recovery behaviors in Figure

3.2 (b) and Figure 3.2 (c) are proper, as it is easy to check that S(a\) = S(ai) in both the

behaviors and all recovery events are contained in y2 = a 2 - ai only. The following

Midfix Deletion Lemma captures the implications of a proper recovery behavior.

37

Given a proper recovery behavior a = oti • 72 • 73 • 74 • •••• 72/ • 72/+1 • ••••

72/t • 72H1, a = ai • 73 • 75 • • • • • 72/+1 • • • • • 72*+1 is a behavior of D*.

The proof is by construction, first to show that ai • 73 is a behavior of D*.

(i) ai e D*. This is directly from condition (b) of proper recovery behavior;

(ii) ai • 73 e D*. Since 5"(ai) = S f a) =°S(73) and 73 is a midfix of D*, by

following the global state axiom discussed previously, 73 is a failure-free

extension of ai in D*,i.e., ai • 73 is a behavior of D*.

The above construction can be repeated for 73 • 75 • ... • 72/+1 • ... • 72/t+i and

hence the claim holds. •

Lemma 3.2 establishes an important relationship between a proper recovery behavior

and a failure-free behavior of D*. In particular, by 'ignoring' midfixes that contain

recovery events as if they are stuttering events, the behavior that remains is a behavior of

D* as if the failures have never occurred. Hence, a proper recovery behavior can be

mapped into a correct behavior in D*. This correctness requirement follows from the set

of allowable behaviors in a distributed computation D, and shows that a proper (correct)

recovery behavior should consist of special midfixes whose removal leaves behind a

correct behavior of D*. It is a general model that captures both deterministic (e.g., log-

based) and non-deterministic (e.g., coordinated checkpoint based) recovery strategies by

allowing recovery actions to include playback and discard of messages. Also, it allows

multiple crash recoveries that may or may not overlap throughout the system's lifetime.

3.1.3 Quasi-Atomic Recovery Block

A normal execution usually contains midfixes that are exclusively localized to a subset of

processes, e.g. process conversations [Ran75] and coordinated atomic actions [XBR+95],

These midfixes are 'independent' in the sense that events inside such a midfix have no

effect on the advancement of those processes not involved in and vice versa. Similarly, in

Lemma 3.2:

Proof:

38

a recovery behavior, special midfixes containing recovery events can have the same

independence property and consequently isolate the effects of failure recovery, as follows:

Definition 3.2 (Quasi-Atomic Recovery Block):

A midfix p of a recovery behavior a forms a quasi-atomic recovery block iff

(i) send{m) e p=> either recv(m) e p or m is discarded by the kernel, and

(ii) recv(m) e p=> either send(m) e p or m is replayed by the kernel, and

(iii) p contains at least one reset event from each process involved in p, and

(ii) the initial state of each process before p is identical to its state after p.

In addition, if for any message m, send(m) e p <=> recv(m) e p, i.e., there is no message

playback or discard, P is called an atomic recovery block.

Quasi-atomicity ensures independent advancements of the events in p in presence of

failure and recovery events. Its difference from atomicity lies in the existence of special

message handling actions that are required in recovery. Hence an atomic recovery block

satisfies quasi-atomicity but not vice versa. As immediate examples, the midfixes shown

in Figure 3.2 (b) and Figure 3.2 (c) corresponding to - ai are quasi-atomic. The notion

of quasi-atomic recovery block is to capture a midfix that can be deleted from a proper

recovery behavior as if the events in this midfix have never occurred (refer to Lemma

3.2). Since the processes are brought back to their initial states right before the block, all

events inside such a block can be considered as if they never happened.

A midfix P is ordered before another non-overlapping midfix P' in the same behavior

(written p-> P') iff

(i) an event in p happened before some event in p', or

(ii) there exists another midfix P" such that p ^ P" and P" -» P'.

A set E of midfixes is well-ordered if V y„ j j e E : (y,- -> y_,-) => —>(y j -> y,). In other

words, the ordering is anti-symmetric. Two midfixes y,-, y7 are un-ordered if —I(y, -> j f) A

39

—i(yy 7,). The next theorem shows that well-ordered quasi-atomic recovery blocks are

related to proper recovery.

Theorem 3.3: A recovery behavior a is proper if its kernel events are contained in well-

ordered quasi-atomic recovery blocks.

Proof: Given k well-ordered quasi-atomic recovery blocks in a , from well

ordering requirements, these blocks can be labeled as 72, 74, ..., 72/, •••, 72*

such that i>j => —1(72/ 72/)- We prove that a can be written as a = ai •

72 • 73 • 74 • • • • • 72; • • • • • J2k • 724+1- Consider a.] to be the set of events that

are not in 72 but that happen before some event in 72, i.e., ai = {e | 3 e' e

72 : e -» e' A e i. 72}. Consequently, both ai and a2 = a\ • 72 are prefixes

of a . Now consider 013 = {e | 3 e' e 74 : e —> e' A e € 74}, and 73 = a3 - a2.

Then 013 = a 2 • 73, and 014 = a3 • 74 are prefixes of a . By repeating the

above construction, we arrive at a2k = 0.2k-\ • J2k as a prefix of a . Finally,

a can be constructed as a = a2k+\ = a2k • j2k+\ = ocj • 72 • 73 • 74 • ••• • 72/

• • • • -J2k- J2k+] •

By quasi-atomicity, all kernel events are contained in 72, 74, 72/, J2k-

Therefore ai is a failure-free behavior of D*. Moreover, each of the

recovery blocks has identical initial and final global state, i.e., 5(ai) =

S(a2), S(a3) = S(a4), etc. Hence the claim holds. •

The implication of the above theorem is very general and is applicable to any

distributed system. Suppose a checkpoint-recovery protocol ensures that the resulting

recovery behavior satisfies the condition in Theorem 3.3. From Lemma 3.2, the recovery

behavior 'embeds' a valid behavior in D*, and consequently will deliver the same results

as the latter. For this to hold, application results should be delivered upon termination of

4 0

the execution (i.e., as if in a closed system). If the application involves interaction with

the outside world process (OWP) [SY85], it is required that these interactions should not

occur in the midfixes 72, that are deleted in forming a behavior in D*. However, for

simplicity, such an extension involving OWP has been omitted.

The quasi-atomic recovery model is generic and it accommodates both deterministic

and non-deterministic recoveries [SY85, JZ88], In the former case, there is an implicit

quasi-atomic recovery block formed by the portion of events between the maximum

recoverable system state and the after-recovery system state, which serve as its identical

initial and final states. On the other hand, piecewise deterministic (PWD) is not enforced

in this model, and hence an after-recovery execution could be different from the one

before recovery. As a result, this model is able to capture non-deterministic recovery

behaviors resulted from coordinated checkpointing strategies.

In addition, the notion of quasi-atomic recovery block models the portion of process

behaviors being nullified during a single recovery. It can be easily applied to capture the

consistency requirements of existing strategies. For example, global checkpoints [TS84,

CL85] form a consistent recovery line, which corresponds to having a single quasi-

atomic recovery block that ends with a reset event in every process. For min-process and

CIC protocols [KT87, CS98, AER+99], the resulted quasi-atomic recovery block involves

a subset of processes that interact via messages after their last checkpoints. In log-based

recovery [SY85], a quasi-atomic recovery block contains a reset event in each recovered

process, followed by a sequence of message events that are replayed deterministically.

The property of quasi-atomicity is very general and it covers all kinds of available

checkpoint and recovery techniques, including partial or complete recovery lines,

consistent or inconsistent recovery lines, message playback and discard, etc. This makes

it possible to develop new strategies that feature different combinations of these

41

techniques with more desirable properties. For example, the group checkpoint and

recovery strategy introduced in Chapter 3.3 can recover well from a partial inconsistent

recovery line assisted by message playback and discard, which is impossible for

traditional checkpoint- or log-based recoveries.

3.2 Checkpoint Dependency and Recovery

As checkpoints are taken in a distributed execution, recovery dependencies between

checkpoints also arise. Such dependencies can be caused by program order between two

checkpoints or message interactions between the program fragments that follow two

checkpoints. Dependency models have been proposed in literatures from different

perspectives. Rollback-dependency graph [BL88] and checkpoint graph [Wan93] are

built to trace dependencies among uncoordinated checkpoints in order to determine a

recovery line. Z-path and Z-cycle [NX95] are formulated to capture special checkpoint-

message patterns, and are also useful in avoiding useless checkpoints in communication-

induced checkpointing [AER+99]. These models capture particular characteristics

associated with the corresponding checkpoint strategies. This chapter presents a generic

model named Checkpoint Dependency Graph (CDG) [WLG06] that aims at capturing the

essential recovery requirements applicable to all existing strategies, as well as the new

group checkpoint strategy to be introduced in the next chapter.

3.2.1 Checkpoint Dependency Graph

Common to all checkpoint protocols, local states of processes are saved as local

checkpoints. A local state keeps the minimal information by which a process can recover

upon failure via resetting to that state. Hence, a local checkpoint containing only the local

state is a minimal checkpoint. However, a process checkpoint often contains more

information than just the local state, such as a channel state in the case of coordinated

42

checkpointing and a message log in the case of log-based recovery. From this perspective,

a minimal checkpoint contains the minimal information retained in a checkpoint,

independent of the details of the checkpoint protocol. Symbolically, the kth checkpoint

taken by process /?, will be denoted as c,i. In addition, the behavior associated with

process is partitioned into fragments due to the creation of minimal checkpoints. There

is a distinct behavioral fragment B,k associated with each checkpoint C&. Contained in B-&

are the events that occur after c,* but before (i) the creation of the next checkpoint citt+i, or

(ii) occurrence of a process crash of or (iii) proper termination of /?,.

Recovery dependency can be formed among minimal checkpoints at runtime, due to

either local program order or message interactions. Sequential execution of each process

Pi causes a program-order dependency between any two successive checkpoints and

Cik+1 (written as c,* 0- As a result, when p, is reset to recover B&, Bjk+\ will also be

recovered. On the other hand, a message m sent in B,k and received in Bjk' creates a

symmetrical message dependency between c/* and Cjk- (written as c,* <-> cjk). Recovery of

Bik requires recovery of B j s o that message m can be properly received again by pj as a

recovery partner. Similarly, recovery of Bjr requires recovery of Bik so that the message m

can be reproduced to be received by the recovered pj.

A baseline Checkpoint Dependen cy Grap h (baseline CDG) can be constructed using

both kinds of dependency relations among minimal checkpoints. As an example, Figure

3.3 (a) and Figure 3.3 (b) show an execution involving two processes and the

corresponding baseline CDG respectively. Since recovery dependency is transitive, when

a process crashes and recovers at its most recent checkpoint, say c,*, it could induce other

processes to recover with it. In a baseline CDG, reachability from a checkpoint c,*

identifies the set of other checkpoints (and hence the corresponding behavioral fragments)

that have to recover with c,-*. This set is called the reachable component of clk. A baseline

43

CDG captures all recovery dependency relations established without any message

logging, e.g. in case of uncoordinated checkpointing. Similar to existing dependency

graph models [BL88, Wan93], it can be used to analyze domino effect [Ran75] and

determine the recovery line among uncoordinated checkpoints.

p< — • rf \ [hr> c* R = = = = 0= = = = = XD c» m / \ ciW / f f dk+\ c,i+1 ZS2
P] D i ' ^ Cjk& = " = = ̂ O ' Cjkv c .CP = = = = = > 0 Cjk,+]

(a) An execution (b) Baseline CDG (c) A protocol CDG

L e S e n d s o Checkpoint in CDG
Local checkpoint = = => Program order dependency

p. Inter-process message ^ Message dependency

Figure 3.3 Checkpoint Dependency Graph for a distributed execution

In order to reduce dependency edges and to control recovery spread, checkpoint

protocols usually record more information about behavioral fragments. For example, in

log-based recovery [SY85], all messages and event determinants are logged for

deterministic recovery. As shown in Figure 3.3 (c), in such a case the resulting CDG has

no message dependency edges, i.e. they are effectively removed due to logging of

corresponding messages. Consequently for a particular checkpoint and logging protocol,

there is a resulted specific protocol CDG, G = <C, D>, that captures the remaining

dependency relations after the removal of some of trie dependency edges. Here, C is the

set of checkpoints and D is the set of dependency edges. In a protocol CDG, a (local)

checkpoint Cik is represented as a three-tuple, in order to capture relevant information

saved at runtime for the recovery of B&. Formally, c,* = <Stk, L,k, Njk> where

Sik = local process state recorded in checkpoint c,k,

Lik = a log containing a subset of messages received in B,k, and

Nik - a sequence of determinants associated with B^.

The set of dependency edges D in a protocol CDG is a subset of those in the

44

corresponding baseline CDG, resulted from selectively removing some of the message

dependency edges (i.e., via message logging). For example, coordinated checkpoint

protocols only remove the edges corresponding to in-transit messages across a global

checkpoint, while in log-based recovery all message dependency edges should be

effectively removed. For simplicity, the rest of this thesis will use the term CDG to refer

to protocol CDG.

A protocol CDG G = <C, D> is proper if it satisfies the following requirements:

(a) D includes all program-order dependency edges among checkpoints in C.

(b) If message interaction exists between B& and Bjk•, then either c,* <-> Cjw is

included in D, or otherwise every such message is logged in or Ljk-.

(c) All event determinants are recorded.

The log set can be implemented at either the sender or the receiver side. For ease of

presentation, this thesis assumes receiver-side logging. In addition, it is assumed that all

event determinants are identifiable and can be logged.

Properness of a CDG captures the consistency requirement between removing

message dependencies and recording runtime information. In other words, necessary

information (i.e. messages and event determinants) must be recorded in order that

reachability in a proper CDG can be used to identify the set of checkpoints, required for a

correct recovery. In addition, both information recording and dependency removing can

be done at run time by the checkpoint protocol. From this perspective, once a proper

CDG is generated by a checkpoint protocol, it can be used for correct recovery by

identifying the reachable component from a failed process's behavior fragment. This

allows separating the design of specific checkpoint protocol from a generic recovery

protocol that can be used independently. In fact, it will be proved next that as long as the

CDG is proper, the generic recovery protocol can guarantee correctness of process crash

45

recovery, without knowing any details of the checkpoint protocol.

Logging all messages is expensive and may incur unaffordable delay to the

underlying execution. Propemess of a CDG provides the possibility of optimizing

logging in checkpoint protocols. In particular, by selectively removing some message

dependency edges, it is possible to trade off the runtime overhead caused by logging and

the latency caused by recovery spread.

3.2.2 Recovery with CDG

Usually a process stops execution as soon as it crashes [SS83]. Recovery protocols are

designed to recover such process failures from saved runtime information such as

checkpoints and message logs. In general, a recovery is considered as successful if the

system can be restored back to normal as if there is no failure occurred. This relates a

correct recovery to a quasi-atomic recovery block (see Chapter 3.1.3).

Definition 3.3 (Correct Recovery of Process Crash):

A crash recovery is correct if the recovery leads to a quasi-atomic recovery block in the

corresponding execution behavior.

A quasi-atomic recovery block isolates its recovery behaviors from outside processes.

Correctness is guaranteed by ensuring the pre- and post-recovery local states of involved

processes to be identical. As an example, in Figure 3.4, the crash of /?,- as indicated by X

triggers a recovery of pt and pj, in particular, their corresponding behavioral fragments Bik,

Bjk• and B]k •+1. However, neither pm nor p„ is involved in the recovery, as the message

dependencies created by m3 and are decoupled through message discard and replay,

respectively. pm and p„ advance their behaviors forward asynchronously without being

affected by the events in the shaded quasi-atomic recovery block. Upon completing the

events in this block, the recovered states of p, and pj can be part of a global state (cut) that

4 6

depends on the asynchronous advancements of pm and p„, somewhere bounded between

the global cut 1 and global cut 2 (which limits the extent that pm and p„ can advance

without pi and pj).

PN

global cut global cut 2 Legends:
\ Asynchronous r-i ,
, d d v d l l t u l l e l l l u f j j Local checkpoint

/

p„ and p„ / Process crash

Process reset

Inter-process message

j ,.' m \ ^ J ^ Message playback

— Q ' * J i } > f Message discard
! v 4 • recovered I <~jk *-jk'+1 [• " : _ I ,

| "reset"state "J state j J Re-executed fragments

Figure 3.4 Deterministic recovery of behavior fragments

In the above example, both pt and pj re-execute a set of behavioral fragments during

recovery. If this re-execution is deterministic, /?,• and pj will reach a recovered state that is

the same as the reset state reached before the recovery action. This is an instance of

deterministic recovery, which can be defined as follows.

Definition 3.4 (Deterministic Recovery of Behavioral Fragments):

A set of behavioral fragments S is deterministically recovered if for each fragment B e S,

the following properties are guaranteed in its re-executed fragment B' after its process

being reset:

(a) The local state at the beginning of 5 ' is the same as in the original fragment B.

(b) The same sequence of events occurs in B' as in the original fragment B.

(c) The local state of B' after each event is the same as in the original fragment B.

This definition captures the minimal abstract requirements for re-executing a

behavior fragment during recovery. Unlike non-deterministic recovery that requires the

system to roll back to a consistent global checkpoint, deterministic recovery usually

47

works with message logging but involves fewer processes. In addition, it is always

necessary when there is an un-recoverable outside world process (OWP) [SY85]. To have

a localized recovery effect, in which case the set of all other processes not being

recovered is acting as an OWP, deterministic recovery should be employed.

Theorem 3.4: A process crash can be recovered correctly by the deterministic recovery

of a set of behavioral fragments S provided:

(i) S includes the most recent behavioral fragment of the crashed process;

(ii) If a fragment J i s in S, then all subsequent fragments Bik' (k'> k) are

in S, and

(iii) Every message re-sent in a re-executed fragment in S is discarded if

the original message was received in a fragment not in S.

Proof: From (i) and Definition 3.4, the crashed process upon recovery will reach

its state right before the crash. For each process involved in recovery, from

(ii) and the property of deterministic recovery, that process will also reach

its state right before recovery. Hence in the recovery block formed by the

re-executed fragments, all involved processes have the identical pre- and

post-recovery states. From (b) of Definition 3.4, all events will be re-

executed in this recovery block, which implies that for any message m

involved, i) if m is contained in S, then both send{m) and recv(m) will be

re-executed; ii) if only recv(m) is included in S, it will be re-executed via

replaying of message m\ iii) if only send{m) is included in S, (iii) ensures

that m will be re-sent and then discarded. The recovery block is hence

quasi-atomic. From Definition 3.3, the recovery is correct. •

Deterministic recovery can be implemented through a generic recovery protocol,

4 8

using the information recorded at run time. Given a CDG G = <C, D> maintained by

some checkpoint (and logging) protocol, and a set of behavioral fragments S with the

corresponding checkpoints in C, the generic recovery protocol performs recovery of the

behavioral fragments in S as follows:

i) Re-execute each process involved in S from its earliest fragment included in S.

ii) The re-execution is performed by applying the following rules:

(a) Before re-execution, a recovering process pi will check each behavioral fragment

Bik included in S, and will remove from the corresponding Ljk all the message logs

that are sent from a behavioral fragment Bjy that is also included in S.

(b) When pi re-executes a message receive in a fragment B,t in S, it will essentially

remove the corresponding message involving that channel from provided that

such a message exists in the log, and will replay the message.

(c) When a message m re-sent from a re-executed fragment B,k is received, the

receiver, say pj, will discard this message if it appears in some Ljk-.

(d) In order to ensure deterministic recovery of every event in Bik, determinants

recorded in Nik of the corresponding Cik will be applied accordingly.

For the example in Figure 3.4, suppose that all messages are recorded in the

corresponding log sets, and S is the set containing c,*, Cjr and c,-*-+i. Before re-execution,

the generic recovery protocol will first remove mi from Ljk-, while m\ and m4 remain in

Lik-1 and Ljk-+i respectively, and Lik and Ljk- are empty. During the re-execution, m\ is re-

sent as m\' and is then discarded; m2 is re-sent as mi' and finally is received by pj. Since

pm is not involved in recovery, m^ is in a log set of pm. Therefore, when m^ is re-sent as

m^' to pm, m3' will be discarded. When pj re-executes a receive event regarding m4, it will

remove m4 from Ljk-+\ and replay m4 as m4'.

Corollary 3.5: Given a proper CDG and the most recent checkpoint c,* of a crashed

4 9

process p t h e generic recovery protocol performs correct recovery using

the set S of behavioral fragments associated with the reachable component

of cik.

Proof: Conditions (i) and (ii) of Theorem 3.4 are satisfied by the use of the

reachable component of c,* in generating S. Rules (a), (b) and (d) in the

generic recovery protocol ensure deterministic recovery of all the

behavioral fragments in S, while rule (c) ensures condition (iii) of

Theorem 3.4. •

Corollary 3.6: The generic recovery protocol can properly recover simultaneous crashes.

Proof: Suppose there are multiple processes p„ pj, ..., p„ that crashes

simultaneously. Given the reachable components of their most recent

checkpoint c,*, Cjk, ..., c„\, from Corollary 3.5, the generic recovery

protocol can individually perform a correct recovery for each of them if

they are disjoint from each other, leading to well-ordered quasi-atomic

recovery blocks. If a behavioral fragment, say B i s involved in multiple

reachable components, from rule (a) of the generic recovery protocol, the

corresponding process /?, will remove from Z,,* the messages that are sent

and received between those overlapping reachable components, and as a

result, their recoveries will be effectively merged into one. From Theorem

3.3, the simultaneous crashes can be recovered properly. •

The generic recovery protocol is checkpoint protocol independent. Correctness of

crash recovery is guaranteed as long as the checkpoint protocol creates a proper CDG.

Hence correctness of a checkpoint protocol can be separately addressed by checking if

the resulting CDG is proper.

50

Definition 3.5 (Correctness of a Checkpoint Protocol):

A checkpoint protocol is correct iff it always generates a proper CDG.

CDG also plays an important role in garbage collection of unusable checkpoints. In

general, as checkpoints accumulate in stable storage, some become no longer usable and

hence need to be discarded from time to time. A local checkpoint is safe to be discarded

only if it will no longer be used for the recovery of any process failure. Obviously the

most recent checkpoint is un-discard-able, so are the checkpoints in their reachable

components. In principle, a checkpoint that is not reachable from any most recent

checkpoint can be discarded by garbage collection. Consequently, given a CDG G = <C,

D> maintained by some checkpoint and logging protocol, a generic garbage collection

protocol can be designed to locate the set of most recent checkpoints with their reachable

components, and then to discard unusable checkpoints from time to time. Similarly, it is

independent of any checkpoint as well as recovery protocol. Unlike the generic recovery

protocol that is triggered by a process crash, garbage collection is triggered by creation of

new checkpoints, usually upon completion of a (coordinated) checkpoint.

3.3 Group Checkpointing

Both checkpoint- and log-based recovery strategies suffer from inevitable disadvantages,

which contradict each other's advantages and also restrict their applicability. A natural

alternative is to develop a hybrid strategy that takes advantage of both the approaches in a

harmonious manner. Essentially, only a subset of processes is expected to be involved

during checkpoint as well as recovery, and only a small portion of messages is expected

to be logged at run time. This is particularly important in large-scale and possibly

geographically distributed systems, in order to localize a crash recovery to a small sub-

51

system of the entire system without sacrificing too much runtime performance.

In the literature, there are various protocols proposed with similar checkpoint or

recovery effect, but none of their recoveries is controllable. For example, min-process

checkpoint protocols [KT87, CS98] manage a partial coordinated checkpoint only among

processes that have message interactions after their last checkpoints. The checkpoint

coordination is targeted as 'minimal' but the recovery depends on the unknown future

communications. CIC protocols [AER+99] employ a similar mechanism and have the

same recovery effect. Optimistic logging [SY85] can involve an unpredictable number of

'orphan' processes into recovery, which is completely a by-chance result. All these

strategies fail because they are not designed for such a purpose, and are not resulted from

recovery dependency analysis as well.

Based on the theoretical results presented previously, a group checkpointing

approach is proposed and developed in this chapter, with the target of addressing the

above issues. In principle, this approach employs a selective policy in dependency

handling, making it possible to have both coordinated checkpoint and message logging at

the same time. A group or subset of processes can take a coordinated checkpoint, and

then only log messages from other groups. The resulted partial checkpoint is called a

group checkpoint, which differs from a global checkpoint and a local (individual)

checkpoint. To facilitate logging, each group can be assigned a unique color and

messages sent by a group can be colored accordingly. Coordinated group checkpoints

avoid logging inside each group, while logging removes inter-group recovery

dependencies. Both logging and recovery effect hence can be effectively controlled.

This chapter starts with an example group checkpoint protocol that is based on

specific agent communication structures, followed by a discussion about general group

checkpointing and the related message coloring mechanism. Group formation can be

52

atomic or non-atomic, with different focuses on performance and flexibility. Similar to

logging that removes message dependencies, process cloning can be used to effectively

remove program-order dependencies. Based on this technique, results for recovery with

bounded size are developed and protocols are also presented.

3.3.1 An Example Group Checkpoint Protocol

One important objective of the target hybrid strategy in this chapter is to improve the

runtime performance, in particular, to avoid logging as much as possible. The ultimate

choice is hence to not log any message at all, which in turn also avoids message playback

during recovery. The resulted checkpoints are called 'strongly consistent' [HNR99], i.e.,

there is no orphan or in-transit message across the corresponding recovery line. Also,

checkpoints are better taken in a non-blocking manner, as the underlying failure-free

execution hence will not be slowed down. The other objective is to localize the effect of

checkpoint coordination as well as recovery, so that it only involves a small subset of

processes rather than the entire universe. A candidate solution is to carefully manage a

partial coordinated checkpoint around a group of processes, which are coupled with each

other via message interactions and will recover together upon the failure of each other.

Among all the above requirements, the property of strong consistency is critical: the

positions of checkpointing should be carefully selected; or otherwise the failure-free

execution has to be blocked. In fact, real-life distributed systems such as multi-agent

applications often consist of special communication structures that can be made use of.

Agents are role-based [Ken98, SE05] and they perform their tasks via agent protocol

sessions [BMOOl, OMG(33]. At design time, roles specify task decomposition and

collaboration among agents, and are usually implemented as a set of agent protocols. An

agent can play multiple roles at different times. As a result, message interactions among

agents form agent protocol sessions. For a period of time, an agent usually interacts only

53

with a subset of others, which have lifelines that are coupled together, forming a localized

sub-region in space and time. In general, such localization of agent interactions are often

around the following units: i) a single agent protocol session, ii) a subset of concurrent

protocol sessions that merge due to multiple roles played by a same agent, and iii) a

subset of protocol sessions exercised causally after a particular protocol session. Agents

within such a unit interact exclusively with each other and there is no message between

units. Consequently a strong group checkpoint can be managed around these units. For

example, before sending or receiving any message in such a unit, the local state of each

participant agent can be saved for future use. Due to the exclusiveness of agent

interactions, the corresponding group checkpoint is strong and there is no necessity to log

any message.

Another requirement is the asynchrony of checkpointing, i.e., checkpoint creation

should not block the failure-free execution. Fortunately agent protocols are well-

structured by design, which helps to achieve the non-blocking feature of agent group

checkpointing. More specifically, in an agent protocol there is usually a special agent

acting as the session initiator, and a chain of agent messages causally passing from the

initiator to each member agent and eventually going back to the initiator. Each member

agent starts its participation into the session when it is involved into such a 'message

chain'. A protocol session is started when the initiator sends its first message in the

session, and is ended when the initiator has completed all its events in the session. As

message chain is widely used in agent application design as well as agent protocol

programming, the above property is very popular in many FIPA protocols [FIP99], This

in turn enables embedding of checkpoint coordination within normal application

messages, and thus eliminates the necessity of explicit synchronization between agents. It

is easy to prove that by piggybacking the membership information onto application

54

messages, eventually the initiator and each participating member will be aware of each

other. Coordination of group checkpointing hence can be managed asynchronously.

This chapter presents a simple non-blocking protocol that creates strong group

checkpoint for each agent protocol session. For each agent, the checkpoint creation time

is right before its participation into a session. Overlapped protocol sessions have message

interactions between each other, and hence need to checkpoint together. In other words,

agents participating in these sessions form a single group, and only one group checkpoint

is created for such a group. This in turn implies that each agent only needs to take a

checkpoint when it has completed its events of all previous sessions and is ready to start a

new one. At runtime, message piggybacking is used to identify overlapping of protocol

sessions and to manage recording of related information for recovery. Given below is an

informal description of this Agent Strong Group Checkpoint (ASGC) protocol.

Group checkpoint initiation: A group checkpoint can be initiated by an initiator agent a, of a protocol

session Pt, provided that it is not currently involved in another session Pj that overlaps P,. To start the

initiation, a, simply takes a local checkpoint before participating in P,.

Group construction: Once associated with a group, each member agent will propagate group membership

information to other members. Such group information is also saved with the corresponding local

checkpoint for later use during recovery.

Checkpoint coordination: For each member agent receiving an application message of a protocol session

for the first time, if it is not currently involved in any other protocol session, it will first take a local

checkpoint corresponding to the group before the actual delivery of the message. Otherwise, it will simply

associate the current local checkpoint with the new group.

A more detailed description is shown as follows.

Data structure for an agent a,:

inc = current incarnation number, initialized to 0, to be used during recovery;

current = current local checkpoint number, initialized to 0;

group id = (initiator id, current checkpoint number of initiator), the identifier for a

protocol session;

member (group id) = set of participating agents in group id. Initialized to empty set;

55

receivers (group Jd) = set of agents in group_id to whom a, has sent an application message;

label (current) = set of protocol sessions with which the current local checkpoint is associated;

Actions for an initiator a, on starting a protocol session P,:

if a, has completed all previous sessions or P, is the first session of a, then

begin

Save local data structure with the current checkpoint;

current = current + 1; Create a new local checkpoint;

groupJd = {i, current); member {groupJd) = {/}; \abz\(current) - {};

end

group_id= (i, current);

label (current) = \abe\(current) u {group_id};

Actions for an agent a, on sending an application message m pertaining to protocol session Pk to agent

a/.
Piggyback message m with (groupJd, member (group id), inc);

receivers (groupJd) = receivers (groupJd) U {/'};

Actions for an agent a, on receiving a message m piggybacked with (groupJd', member', inc'):

if this is the first time receiving a message with group Jd' and a, has completed all previous sessions

then

begin

Save local data structure with the current checkpoint; current = current + 1;

Create a new local checkpoint before the actual delivery of message m;

label (current) = {groupJd'};

end

else label (current) = label (current) u {groupJd'};

member (groupJd") = member (groupJd') u {/} u member'.

Figure 3.5 shows an example of the ASGC protocol. There are altogether four agent

protocol sessions, identified as Pi to P4. P\ overlaps with P2 and P3. From the protocol,

they are expected to form two strong group checkpoints: one before the overlapped

sessions Pi, P2 and Py, and the other before P4. The initiator of each protocol session is

the agent that sends the first application message in the session. As the initiator of P\,

agent <33 creates checkpoint C31 and labels it with {(3, 1)} to reflect that it is associated

with a group checkpoint identified as (3, 1). As the protocol session progresses,

56

checkpoints c21 and c4\ are created in agents a2 and a4 respectively. However, agent a2

starts another protocol session P2 before it terminates its participation in P\. According to

the checkpoint protocol, it will skip the creation of a new checkpoint and proceed to

merge Pi and P2 as a single protocol session. As the initiator of P2, a2 uses <2, 1) as the

identifier for P2. This, in turn, causes the creation of c\\ in a\, with label (cu) = {(2, 1)} as

its identity. Progressing further, before ending P\, agent a3 participates in yet another

protocol session P3. Rather than creating a new checkpoint for P3, agent a3 simply

modifies the label of c3] to become {(3, 1), <5, 1)}, indicating that c31 is used as the

checkpoint of agent <33 for both sessions, one started by o3 and identified as (3, 1) and the

other started by as and identified as (5, 1). In Figure 3.5, local checkpoints c\\ - c2\ - c3i -

C4] - C51 form a strong group checkpoint due to the overlapping of corresponding protocol

sessions. Afterwards, when a\ terminates its participation in P2 and starts a new protocol

session P4, c\2 and c22 will be created and labeled as {(1, 2)}, forming another strong

group checkpoint.

Figure 3.5 Group checkpoints for overlapped protocol sessions

Lemma 3.7: The ASGC protocol creates strong group checkpoints.

Proof: According to the protocol, each agent takes a local checkpoint if and only

if it is going to participate in a new protocol session and meanwhile it is

not currently involved in a previous protocol session. To show that the

group checkpoint thus formed is strong, suppose that there is an in-transit

57

message m across the cut for a protocol session P-, (i.e., message m is sent

before the cut but received after the cut), and then m belongs to a previous

protocol session Pj that overlaps P,. This contradicts the checkpoint

protocol since an agent creates no local checkpoint if its previous protocol

session is not finished. Consequently, the checkpoint protocol creates a

strong group checkpoint, where a group is formed by either a single non-

overlapped protocol session or a merger of all overlapped protocol

sessions. •

Corollary 3.8:The ASGC protocol is correct.

Proof: From Lemma 3.7, the protocol creates strong group checkpoints and there

is no message logging at all. For the corresponding protocol CDG to be

proper, all program-order and message dependencies should be recorded.

From the protocol, group information is piggybacked and propagated

along with all application messages, and is saved upon checkpoint creation.

As a result, both the sender and the receiver of a message record the

corresponding message dependency. On the other hand, program-order

dependency is maintained via the sequentialization of local checkpoints by

the same agent. The protocol hence creates a proper CDG and is correct. •

The ASGC protocol is simple and efficient. Agent execution is not blocked, as

checkpoint coordination is done via message piggybacking. A localized group checkpoint

is created for each (non-overlapping or merged) agent protocol session, which usually

involves a small number of agents due to localization of agent message interactions.

Strong consistency of group checkpoints avoids message logging and hence reduces

runtime overhead.

58

Besides checkpoints, additional group information is also created and saved with

individual checkpoints, in order to speedup recovery upon agent crash. Message chains

convey to each member of a protocol session the identity of the initiator, and also enable

the initiator know all the members. In addition, each member learns of the protocol

session(s) associated with each checkpoint. All of this information is useful for

identifying recovery spread when a crash failure occurs (with either the initiator or a

member agent). Essentially the recovery protocol needs to locate all checkpoints that

depend on the most recent checkpoint of the crashed agent. From Corollary 3.8, all

program-order and message dependencies should be retrieved, which is very similar to

the dependency tracing among independent checkpoints [BL88, Wan93]. Besides, agent

group checkpoints also record group information that can facilitate the reachability

analysis. The following presents a recovery protocol that uses a three-phase procedure to

find all affected agents. As a widely-held assumption, there is a recovery kernel

associated with each process or agent. All special kernel messages used in the recovery

protocol, e.g. freeze and acknowledgement messages in the following, are explicit and are

different from normal application messages.

Recovery initiation: Recovery starts from the crashed agent, say a,-. (The kernel of) a,- will serve as the

recovery coordinator. The most recent checkpoint of a, will be used as the seed of recovery.

Locating relevant agents (Phase 1): A freeze message is propagated from the recovery coordinator to all

relevant agents. This is accomplished as follows: i) the freeze message is first sent to the initiator of a,'s

current protocol session; ii) upon receipt of such a message, an agent will freeze its execution and forward

the message to every other member agent that it has talked to during this protocol session; iv) moreover,

upon receiving such a message regarding a protocol session Pj, an agent will also forward the received

message to each Pk if Pj overlaps or happened before Pk in this common agent.

Reporting to coordinator (Phase 2): Once frozen, every agent acknowledges the coordinator about the

relevant protocol session(s) by which it is frozen, and the other agents it has tried to freeze.

Reset of agents (Phase 3): When the coordinator has received all acknowledgements, it will broadcast

reset messages to all member agents hence identified. Each of these agents, in turn, will reset its state to its

earliest relevant checkpoint and resume execution.

Special handling of messages: In-transit application messages corresponding to incomplete protocol

59

sessions are discarded (i.e., not delivered) by the kernel through the use of incarnation numbers.

In general, the above protocol recovers all agent protocol sessions that are affected

by the crashed agent. It should be noted that at run time a protocol session might be

incomplete when some member agent crashes before all its events in the session have

occurred. Such a protocol session leads to the following possible complications: i) the

initiator may not know of every member of the session, and ii) some protocol message

may be in transit while the receiver has crashed or is involved in recovery. Fortunately,

the agent group checkpointing is unaffected by these scenarios, as the occurrence of crash

and recovery will directly cancel the corresponding group checkpoint. On the other hand,

the above recovery protocol takes care of this incompleteness of group information by

employing a diffusion-base mechanism for dependency tracing. A more detailed pseudo

code version of this recovery protocol can be found in a recent publication [LWG06],

3.3.2 Group Checkpointing and Coloring

The features of strong consistency and asynchrony in ASGC benefit from the message

chain assumption about agent protocol sessions. However, such an assumption might not

hold all the time. For example, in a contract net protocol, an agent upon receiving a task

message is allowed to ignore the message if it is not interested or not capable to perform

that task. As a result, there is no message chain going back to the task initiator. In such a

case, the task message becomes a "non-influential" message [THT98] which if ignored

has no effect on either the correctness or the progress of the agent application. However,

from the perspective of a recovery kernel, such a message needs to be taken care of so

that it will not cause dependency or consistency error in case of failure. A simple choice

is to log this message, so that the corresponding protocol sessions can be decoupled in

recovery. It introduces a bit additional overhead at both run time as well as recovery time,

and on the other hand adds to the strategy more flexibility in terms of group management.

60

The ASGC protocol has a localized but uncontrollable recovery effect. In case of

agent crash, all agent protocol sessions that overlap with or happen after the one

involving the crashed agent need be recovered as well. Due to localization of agent

interactions, the recovery spread among protocol sessions is also localized. However, to

maintain the strong consistency of group checkpoints, this spread is subject to the actual

message pattern which is not controllable at all. As a result, the current strategy of

checkpointing every protocol session takes many checkpoints that are in fact useless.

Also, frequent creation of these checkpoints does harm the runtime performance.

Stopping the recovery spread requires effective removal of all dependencies among

checkpoints. As in many checkpoint and recovery protocols, logging is a useful tool for

removal of message dependencies. Meanwhile, logging is also considered as expensive

and should be employed only where justified. In practice, it is worthwhile to pay the price

of logging a few messages for the return of more localized and controllable recovery. The

real challenge is hence to carefully decide the portion of messages to be logged.

To improve the efficiency of checkpointing, group checkpoints should be managed at

proper positions with respect to the actual message pattern, which might or might not be

in the form of agent protocol sessions. This in turn requires a thorough study of the

localization of agent interactions. For ease of presentation, this chapter uses a general

notion of 'locality' to refer to localized message interactions. In the design of parallel and

distributed applications, dependencies between processes are usually decomposed into a

set of well-structured sub-tasks. As a result, corresponding message interactions tend to

be localized within these sub-tasks and form small sub-regions in space and time. This

modular principle is well supported by popular design techniques such as agent role

model [KenOO] and parallel architectural skeletons [GSP02]. In general, distributed

applications are likely to exhibit locality in terms of message interactions, and a

61

corresponding execution often consists of 'locality regions' with the following properties:

i) they are almost disjoint from each other in space and time; ii) each locality region

involves a relatively small percentage of processes; iii) majority messages are clustered

inside these regions and there are a few inter-region messages. Examples of locality

regions include but are not limited to (individual or merged) agent protocol sessions, etc.

Consequently for a particular process, there are almost distinct locality intervals where

the process interacts more frequently with only the small subset of partners of its

corresponding locality region. In other words, within such a locality interval, whoever a

process interacts with recently will likely be involved in future interactions. This makes it

possible for a process to have quite accurate perceptions about its near future, based on

the knowledge about its past interactions. These locality properties all together motivate

the group checkpoint strategy to be discussed below. Detailed study of the locality

phenomenon is given separately in Chapter 4.

The strategy of group checkpointing targets at both optimizing message logging

overhead and limiting the recovery spread. ASGC performs well on one hand but has no

control on the other. Also, it loses commonality as well as flexibility when being put into

application. Therefore, an improved strategy should be based on the general rather than

specific features of distributed applications. From the results developed in Chapter 32, a

recovery can be limited within a subset S of behavioral fragments, if and only if all

dependencies between S and other fragments outside of S are effectively removed. In

principle, processes involved in S need to apply a logging policy by which all messages

from outside of S are logged. This policy is specific to those behavioral fragments in S,

and is also useful to distinguish all checkpoints associated with S from others. The term

"group checkpointing" hence no longer refers to just checkpoint coordination, but a more

general management of all processes involved in S, including group formation,

62

checkpoint creation, logging policy and consequent group recovery.

Assuming that processes form locality regions of message interactions during their

lifetimes, a group checkpoint can be managed around such a region so that only a subset

of processes will be involved. Similar to global checkpointing that avoids message

logging by coordinating all processes, processes of each locality region can avoid logging

the large number of intra-region messages by taking a coordinated group checkpoint

before they start the region. Meanwhile, a selective logging policy can be applied to log

only the small number of inter-region messages, which will effectively remove the

corresponding recovery dependency established between group checkpoints. From the

locality assumption, majority of messages are clustered inside locality regions, and hence

the runtime logging overhead can be greatly reduced.

The above group checkpoint strategy requires member processes of a same group to

act in coordination for both checkpointing and logging. This can be managed via a group

coloring mechanism, by which a unique group identity is propagated among group

members during checkpoint coordination, and afterwards each group member colors its

outgoing messages with its current group identity. Upon receiving a message, a process

can decide if logging should be performed, by simply checking if the message carries a

same color. From a global view, there are groups of checkpoints, each associated with a

specific logging policy that is similar to a distinct color assigned to it. In the above

procedure, coloring of a group is the result of checkpoint coordination, and then is used

to implement the group logging policy.

The CDG model hence can be extended with a coloring feature, in order to capture

the group-specific logging policy regarding particular checkpoints. Formally, a

checkpoint c,* = < 5",*, L,k, N,k> is extended to a colored checkpoint <S,k, L&, Nik,

where T,k = a tag of effective color for checkpoint c,* (and the associated behavioral

63

fragment B!k) such that message interactions between behavior fragments of identical

color need not be logged. The resulting CDG with colored checkpoints is called a colored

CDG. As a result of the logging policy, message dependency may exist in the colored

CDG only between any two nodes with identical color. A colored CDG becomes proper if

all inter-group messages are logged so that message dependency does not exist between

nodes with different colors.

As an example, coordinated checkpoint protocols [TS84, CL85] form a proper CDG

such that nodes associated with a same global checkpoint are of the same color. Message

dependency edges exist only among these checkpoints. Other messages (such as in-transit

messages) are recorded into the logs associated with corresponding checkpoints for

replay upon recovery. On the contrary, log-based protocols [BLL89, SY85] intend to

create a proper CDG such that each node has a distinct color, and there is no message

dependency edge at all.

The coloring feature captures the intrinsic nature of group checkpointing. In a

colored CDQ checkpoints form groups according to their colors. Members of the same

group can avoid logging messages between each other. Actions of assigning a same color

to group members should be coordinated in order to avoid unnecessary logging of intra-

group messages. Introduced next is the notion of atomic group formation towards

minimizing such logging efforts.

3.3.3 Atomic and Non-Atomic Group Checkpoint

Coloring of a group checkpoint can be done atomically or non-atomically. Atomicity

means that the coloring procedure is as if it is instantaneous across all group members.

Note that a group is defined as 'formed' once all member processes join the group by

creating a local checkpoint. Upon formation a group starts its occupation of a space-time

sub-region in a distributed execution. This is also the time when the group is supposed to

64

be atomically colored, which equivalently requires that the unique group identity is

conveyed to every member process as if instantaneously. Afterwards, any message

interaction between members of the same group is not logged. Hence atomic coloring

minimizes logging latency, as a process will not be delayed by logging messages from

other processes with the same color. Atomic group coloring also ensures consistency

among the local checkpoints of the same color (i.e., forming a consistent cut). In formal

terms, we have the following definition about atomic group checkpoint coloring.

Definition 3.6 (Atomicity of Group Checkpoint):

A group (of checkpoints) is atomically colored if it satisfies the following conditions: (a)

consistency: the local states associated with these checkpoints are consistent, i.e., can be

used to form a consistent global state, and (b) uniformity: uniformly logging is not

applied to message exchanges between behavioral fragments in the same group.

It is certainly impossible to instantaneously color an atomic group with designated

member processes. However, it can be managed if the group membership is decided on

the fly. Described below is a simple asynchronous Atomic Group Checkpoint (AGC)

protocol that exploits locality of process coupling using an invitation-based mechanism.

Starting agroup: An initiator process can start a new group of tightly-coupled.behavioral fragments, by

first taking a colored checkpoint and then append its color to its outgoing messages. An invitation list

consisting of processes invited to join a group is constructed based on the initiator's perception of the future

locality.

Propagation of invitation: The invitation list is appended to the first message sent from a member of the

group to a process in the invitation list.

Acceptance/decline of invitation: An invited member may decline by taking no action if its perception of

its future locality differs from the invitation. However, if it accepts an invitation, it will create a new

checkpoint with the new color.

Logging policy: Messages are always colored. Any Message tagged with the same color as that of the

receiver will not be logged.

65

From the above description, it is apparent that the formation of a group involves a

master and a set of consent slaves. In actual implementation, both design time and

runtime knowledge of locality may be incorporated to decide on the missing details of the

protocol, e.g., the construction of the invitation list and the criterion to decline an

invitation. For example, in task-oriented applications like multi-agent systems, design

time knowledge may be used in deciding the future interaction locality of an initiator

agent for the purpose of initiating a group formation. On the other hand, the initiator's

perception about locality may not be accurate. In such a case, runtime or design time

knowledge of an invitee agent may be used to decline an invitation. A detailed description

of the checkpoint protocol is given below. For simplicity, logging of determinants is

assumed implicitly.

Data structure for a processp,:

cur_chpt = The current local checkpoint number, initialized to 0;

cur_color = A two-tuple indicating current color ofp„ initialized to (/, 0);

cur_group = A set of processes as members of ' s current group, initialized to {/?,};

Actions for an initiator p, on starting a new group:

cur_chpt = cur_chpt + 1;

Take a new checkpoint;

cur_color = (i, cur_chpt);

cur_group = {invited processes, p,};

Actions for process on sending a message m to py:

Tag m with cur_color,

if this is the first message to pj after current checkpoint and pj e cur_group

then tag m with cur_group;

Actions for process pt on receiving a message m colored in C from process pf.

if it is the first time to receive a message tagged with group and p, decides to join the group then

begin

cur_chpt = cur_chpt + 1;

Take a new checkpoint before m is delivered;

cur color - C;

cur_group = group;

Record message dependency with process pj with respect to color C;

6 6

end

else if c ^ cur color

then log message m;

else record message dependency with process pj with respect to color C.

(a) An example execution (b) CDG

Figure 3.6 Checkpointing with the AGC protocol

As an example, in Figure 3.6(a), pj initiates a 'red' group involving p, and pj by

tagging an invitation on message m\. /?;accepts the invitation by creating checkpoint c,. cy

and c, form the red group. Afterwards, pk tries to start a 'white' group involving also pj,

pm, andpn by tagging the invitation on application messages rri4 and ms./?„, decides to join

by taking cm and later propagates the invitation to p» by tagging it on m6. As a result, pn

also joins the group by taking c„. On the other hand, upon receipt of m5,pj decides not to

join by logging m5. As a result, mj is still colored in 'red', and hence is logged by pk.

Figure 3.6 (b) shows the corresponding CDG, where the message dependency between 9

and Ck is removed.

Theorem 3.9: The AGC protocol is correct.

Proof: This follows immediately from the logging policy: messages between

fragments of different colors are always logged. Moreover, a message

dependency edge is not included in the protocol CDG, whenever all

messages between the corresponding fragments are logged. Hence the

67

CDG is always proper and the AGC protocol is correct. •

Theorem 3.10: Identically colored checkpoints created by AGC form an atomic group.

Proof: According to the protocol, at the first instance a process receives an

invitation tagged with an application message from a member of a group,

(the kernel of) the process decides whether to join the group. Upon

acceptance, it first creates a checkpoint of the same color as that of the

initiator, before actual receipt of the message (i.e., delivery of the message

to the process by its kernel). As a result, any two checkpoints of the same

color are causally consistent. Hence condition (a) on consistency holds. In

addition, once a checkpoint is created, the process will exercise the no-

logging policy on all received messages tagged with the same color.

Together with the fact that any message it sends out is tagged with the new

color, no behavioral fragment of the same color will log this message as

well. Thus condition (b) on uniformity is also satisfied. o

The AGC protocol is a simple and asynchronous protocol. Simple color tagging and

invitation propagation suffice to achieve the objective of atomicity. In joining or starting

a group, a process does not have to block for handshake acknowledgement from other

processes. Flexibility is introduced by allowing an invited process to decline from joining

a group. Thus, the actual group formed is a subset of the original invitation list, and the

color identifies the actual group.

There are other possible variants to the AGC protocol without affecting correctness

and atomicity. For example, instead of fixing the invitation list at the initiator, the

invitation list can be modified by any member of the group before it is tagged with the

first message to be sent to another process on the invitation list. This modification does

68

not alter correctness: logging is still maintained for messages exchanged between

fragments with different colors. Due to the restriction that acceptance to join a group can

occur only when receiving invitation for the first time, atomicity remains unaffected:

checkpoints of an identical color remain consistent following the same arguments as

before, and same is the case for uniformity.

Groups can also be colored in a non-atomic manner. In fact, neither consistency nor

uniformity is necessary for creating a proper CDG Inconsistent checkpoints or cuts can

be used in recovery if the backward messages across the cut can be identified and

discarded [BMP+03]. The generic recovery protocol introduced in Chapter 3.2.2

guarantees this since messages recorded in earlier log sets are not re-delivered. Non-

atomic group coloring provides more flexibility for members joining a group and taking a

checkpoint, at the expense of some redundant logging. The following Non-atomic Group

Checkpoint (NGC) protocol is such a candidate.

Starting a group: An initiator process can start a new group of tightly-coupled behavioral fragments, by

first taking a colored checkpoint and then append its color to its outgoing messages. An invitation list

consisting of processes invited to join this group is constructed based on the initiator's perception of

locality.

Propagation of invitation: The invitation list is appended to the first application message sent from a

member of the group to a process in the invitation list.

Acceptance/decline of invitation: An invited member may decline to join a group by taking no action if its

perception of its future locality differs from the initiator. However, if it accepts an invitation (promptly or

later), either it will create a new checkpoint with the new color, or it will convert the existing colorless

checkpoint into one with the chosen color.

Leaving the current group: A process can create a minimal and colorless checkpoint at any time when it

perceives no further tight coupling with the current group. A colorless checkpoint reflects that it is not part

of any group yet.

Logging policy: Messages are tagged with the color of the sender. Any message tagged with the same color

as that of the receiver will not be logged, and the corresponding message dependency edge will be recorded.

A message from/to a colorless checkpoint is always logged.

69

In the above description, both design time and runtime knowledge of locality can be

used for decision making. A process has the option to decline an invitation, based on its

own perception of locality. Detailed algorithmic description is omitted and can be found

in [WLG05],

Figure 3.7 shows an example of non-atomic group coloring. Process pm and p„ have

initially left their previous localities and created minimal (and colorless) checkpoints cm

and c„. pj and p, take checkpoints c} and c, respectively to form a 'red' group. When pk

tries to initiate a 'white' group involving pj, pm and p„, it tags the invitation on messages

rrn and ms. Upon receipt of ms, pj decides to decline (ignore for the time being) this

invitation in order to complete its interactions in its current locality (the red group).

Hence it will log ms. Some time later,/?; finishes its task in the 'red' group. It decides to

join the 'white' group and take a new checkpoint cJ+j. As a result, m-j is colored in 'white'

and is not logged by p^ In the other side of the world, when pm receives m4, it decides to

accept the invitation by simply setting the color of cm to white. Similarly, later when p„

receives me it also decides to join the white group by setting the color of c„ to white. As a

result, messages mi and ms are the only messages logged. Figure 3.7 (b) shows the

corresponding CDG, where the message dependency between cy and c* is removed.

(a) An example execution
(b) CDG without (c) CDG with

o n cloning cloning

Figure 3.7 Checkpointing with the NGC protocol

(c) CDG with
cloning

70

Theorem 3.11: The NGC protocol is correct.

Proof: This immediately follows from the logging policy In particular, a message

is always logged unless the sender and receiver colors match. Otherwise,

the corresponding message dependency is recorded. Hence the properaess

requirement (b) (see Chapter 3 . 2 . 1) is always satisfied. By assumption, the

checkpoint protocol records all determinants for deterministic re-execution

of each behavioral fragment and maintains program order in its CDG.

Hence the protocol CDG is proper and the NGC protocol is correct.•

The NGC protocol relaxes the atomicity requirement and provides more flexibility in

group formation around locality. In particular, when a process receives an invitation, it

may defer joining the new group in order to finish its current task in the present locality

region. This avoids coupling of two groups together as well as logging of many messages

later. Furthermore, a process can exit from its current locality independently by creating a

new checkpoint. This separates the process from the old group so that its future failure

will not affect its past partners. Such a separation need not be immediately accompanied

with the formation or participation in a new group. The latter can be decided at a later,

more opportune time. There are also variants of NGC that can be developed, in particular

with regard to the modification of an invitation list.

3.3.4 Cloning-Based Recovery

Checkpoint coloring reduces recovery spread by removing message dependencies

between different colors via message logging. Since message dependency is the major

source of recovery spread, it is conceivable that group checkpoint protocols can form

appropriate groups to localize the recovery spread, especially with applications that

exhibit good locality. However, since a process can belong to multiple groups in its

lifetime, program-order dependencies can still cause recovery spread between these

71

groups. If groups are not appropriately formed, there could be cyclic dependencies among

them and even domino-like effect in recovery. In such a case, recovery of a newly created

group will finally cause recovery of some groups created much earlier. This could happen

when asynchronous participation is allowed in group formation. Similar to the domino

effect [Ran75] in uncoordinated checkpointing, avalanche could arise because groups are

formed independent of each other.

Avalanche rollback can be avoided if program-order dependency among different

colored groups can be removed. In general, the program-order dependency between two

adjacent checkpoints cik and arises because, in recovery, process p, needs to continue

its execution after finishing the recovery of behavioral fragment Bik in order to complete

its work. However, this is only necessary for the failed process, say py, but not for other

processes that are forced to recover with pj as a result of message dependency

In recovery, a failure-free process only needs to re-execute those behavioral

fragments that are relevant to the failed p/s recovery, in order that the dependency

requirements for p/s computation can be re-generated. Therefore, instead of rolling back

a failure-free process pi to help pj, the recovery protocol can spawn a replica of p, to do

exactly the recovery job for those behavioral fragments on behalf of pt, while the original

Pi continues with its execution. This replicated copy is called a (process) clone of pn

which performs a deterministic re-execution of a subset of pi's behavioral fragments. In

general, such a clone has the following properties:

i) Resumable execution: A clone is started from a particular local checkpoint of the

corresponding process.

ii) Limited lifetime: The execution of a clone is terminated at the point where

another local checkpoint is to be created, i.e., it re-executes only a subset of the

behavioral fragments of the original process;

72

iii) Deterministic external behaviors: A clone deterministically re-executes the

behavioral fragments, faithfully reproducing message interactions with respect to

other processes.

Process cloning can be implemented using regular checkpoint and recovery

techniques. For example, a clone of can be initiated from a local checkpoint of pi,

similar to resuming p t from that checkpoint. Deterministic re-execution of behavioral

fragments can be guaranteed by the generic recovery protocol. When finishing its job, a

clone can be terminated by the kernel, in the same way it terminates a normal process for

recovery. The point of termination can be decided by counting down the number of

message events to be executed by a clone in each behavioral fragment, and this number

can be saved at runtime with a checkpoint when the next checkpoint is taken. In addition,

since a process and its clone can co-exist, additional mechanisms should be applied to

distinguish messages for the original process and the clone. Effective use of clones is

certainly platform dependent.

Assuming that clones are used, each fragment can be activated as a clone during

recovery. The corresponding checkpoint is said to be cloneable. Consequently, in a CDG,

the program-order dependency edge c,* Cik+i can be removed if c,k is cloneable. The

properness of CDG, G = <C, D>, hence can be extended (refer to section 3.2.1), by

changing property (a) as follows:

(a) D includes all program-order dependency edges c,* 4 c,VH-1 among checkpoints in

C, unless c» is cloneable.

The generic recovery protocol can also be extended accordingly, in order to

accommodate the use of clones during recovery. This includes termination of clones, and

messages deliveries between clones and other processes. When a given reachable

component during recovery does not involve the most recent checkpoint of a process pt,

73

the generic recovery protocol will start a clone of instead. Correctness is guaranteed by

the satisfaction of the above extended property (a).

Process cloning reduces recovery spread by removing program-order dependencies.

When applied with group checkpoint protocols, cloning can isolate groups from each

other during recovery. Recovery is therefore localized to a single group, while the growth

of a group is totally controllable by selective logging. For the example of using NGC

protocol discussed previously, Figure 3.7 (c) shows the resultant CDG with cloning.

Theorem 3.12: When cloning is applied to all checkpoints, each colored group created

by the NGC protocol forms a reachable component.

Proof: In the NGC protocol, message dependencies only exist between

checkpoints of the same color. Since all checkpoints are cloneable, there is

no program-order dependency edge in the corresponding CDG A

reachable component therefore can only involve those checkpoints with a

same color. Hence the claim. •

Compared to log-based recovery, clone-based recovery will likely help group

checkpoint strategy to produce better runtime performance, when only the few messages

between groups are logged. Moreover, the localized group recovery effect makes it more

attractive as protocol designers can focus on effectively controlling the size of each group

in group formation. Discussed next are issues about limiting the growth of a group.

3.3.5 Checkpointing for Bounded Recovery

Cloning decouples program-order dependencies among groups and isolates groups from

each other during recovery. A colored group hence serves as an independent recovery unit,

i.e., any failure inside of a group triggers a recovery involving only member behavioral

fragments of that group. In particular, in addition to the failed process, only clones

74

corresponding to checkpoints of the same colored group are needed. From the recovery

perspective, obviously a large group involving too many processes or too much work is

not favorable. In large-scale systems, localized recovery will prefer groups with bounded

size.

Limiting the size of a colored group also places a bound on the recovery latency. The

size limit of a group is referred as its group size. A group checkpoint protocol is k-

bounded if it satisfies the following:

(i) Group size is at most k.

(ii) A process willing to join a group should not be declined unless the limit k has

been reached.

Condition (i) establishes the maximum size limit of each group, and condition (ii) ensures

that the growth of a group is always enabled until the limit is reached.

Depending on whether group membership is decided a priori (upon initiation) or is

distributively decided by interested processes subsequently, there are two types of k-

bounded group checkpoint protocols, namely, static and dynamic k-bounded protocols

respectively. A static ^-bounded protocol is not flexible and cannot adjust to runtime

conditions unknown at application design time. A dynamic A-bounded protocol allows

both compile time and runtime optimizations for the formation of groups. As- in the NGC

protocol presented in Chapter 3.3.3, a process may decide to join a group or reject an

invitation dynamically, depending on the runtime knowledge accumulated at that time.

Limiting the growth of a group necessitates additional performance cost, since inter-

group dependencies need to be removed and corresponding messages have to be logged.

Hence the bound k must be carefully chosen in practice.

Checkpoint protocols, such as the NGC, involve synchronization information that

must be propagated from process to process. Information delivery can involve either

75

explicit protocol messages or embedded application messages. The former introduces

additional message overhead, unlike the latter which piggybacks synchronization

information into application messages.

Definition 3.7 (Embedded Protocol)

Protocols that embed all synchronization information in application messages are termed

as embedded protocols. Usually embedded protocols are preferred.

Lemma 3.13: Embedded dynamic ^-bounded atomic group checkpoint (AGC) protocol

does not exist.

Proof: Consider a counter-example in which a group starts with an initiator

process that sends an application message to every other process. The

synchronization information embedded in each application message

cannot carry the exact membership information due to the dynamic k-

bounded-ness assumption. Upon receipt of this message, a process must

decide to join or not to join the group before moving forward. This

decision cannot be made without violating either the size limit or the

progress constraint, as no further protocol-specific message exchanges can

occur in the system. •

Clearly, formation of bounded groups requires explicit protocol messages that cannot

be embedded in application messages. This originates from the fact that consistent global

information cannot be known instantaneously by all processes. Explicit protocol

messages are actual overheads that should be minimized. The following lemma

establishes a lower bound on the number of explicit messages for a dynamic ^-bounded

AGC protocol.

Lemma 3.14: A dynamic Ar-bounded AGC protocol requires at least m - 1 protocol

76

messages in a system consisting of m processes.

Proof: Each of the m - 1 processes other then the initiator must be invited or

otherwise an interested process may never be involved to make up the

group size k, thereby violating condition (ii) discussed previously. •

The previous lemma assumes nothing about the application message pattern.

However, for many applications that exhibit good locality, it is observable that a locality

region usually involves a large enough number of tightly-coupled processes and each

process is reachable via a message chain from an initiator process. Each process in such a

locality region can be considered as a willing process in joining the corresponding group.

Under these assumptions, a simple dynamic ^-bounded AGC protocol can be developed

as a hybrid of message piggybacking and explicit protocol messages.

Under the locality assumption explained earlier, a group is formed based on the

clustered message interactions that occur in space and time. However, in practice, it is

entirely possible for a process to be active in multiple groups at the same time. For

example, a process may interleave between two roles in its interactions with other

processes. As a result, a group may actually contain more than one checkpoint fragment

from the same process.

The use of cloning provides the flexibility to make use of such a colored group.

Since cloning decouples program-order dependencies among groups, such a group can

still recover independently. The following token-based Bounded Atomic Group

Checkpoint (BAGC) protocol is such an example.

Starting a group: An initiator process can start a new group by first taking a colored checkpoint and then

append its color to its outgoing messages. The initiator will start with exactly k tokens in order to limit the

number of fragments in the group.

Distribution of tokens: A process holding some tokens can invite its partner processes in its perceivable

locality to join its current group, by offering them some of the tokens. These tokens will be embedded in its

first message to an intended group member.

77

Handling an invitation: Upon receiving a message of a specific color for the first time and the message is

embedded with tokens as an invitation, then the receiver must decide if it will join. If it decides to join, it

must first return all remaining tokens of the old group that it is holding to the initiator of that group. Then it

will create a new checkpoint with the color of the new group.

To account for the tokens received, it performs the following: (i) consume a token (for its current fragment),

(ii) keep some tokens for distribution to its perceived partners, and (iii) return the rest of the tokens to the

initiator. If it decides not to join, it will return all the tokens to the initiator. Tokens coming from any

subsequent messages of the current checkpoint color will also be returned to the initiator.

Reporting of token consumption: Each token consumer will report its consumption to the initiator. The

initiator will construct its knowledge base about token consumption in the system, according to the reports

it receives.

Requesting of tokens: Upon receiving a message of a specific color for the first time, if the message is not

embedded with any token and if the receiver wants to join the group, it will send a token request to the

initiator and wait for either a token grant or a reject message before proceeding further.

Collection/re-distribution of tokens: The initiator will collect all returned tokens. It will eventually

respond a token requestor process with either a token grant message when some tokens become available,

or a rejection message if all tokens are used up (based on its knowledge of token consumption).

Rejoining a previous group: Upon receiving a colored message of a previous group for the first time since

leaving the group, the receiver can decide to rejoin by accepting an invitation or requesting a token as

discussed previously (depending on whether or not some token is embedded with that message).

Logging Policy: Messages are always colored. Any message tagged with the same color as that of the

receiver will not be logged, and the corresponding message dependency edge will be recorded.

As an example, in Figure 3.8(a), pj initiates a 'red' group involving its partner p-, by

tagging a token on message m\. pt accepts the token by creating checkpoint c;. cj and c,

form the red group. Afterwards, pm starts a 'white' group by tagging a token on each

Legends:

- Delayed message
delivery

• • Protocol message
.. Blocked execution
-> Message received but

undelivered

(a) An example execution (b) CDG with cloning
Figure 3.8 Checkpointing with the BAGC protocol

78

application message m2 and m4. pk decides to join the group by taking checkpoint Q,

while p„ decides not to join and returns the token to pm via a token return message m5.

Later pk sends a 'white' message me to pj without a token. Upon receiving m^p, intends

to join and it sends a token request message mq to pm, and then blocks execution before

actual delivery of m^ (by kernel). As a result, pm sends a token via token grant message mg

to pj. Upon receiving pj resumes execution and joins the 'white' group by taking a

checkpoint. Message m6 is subsequently delivered (by kernel) after the creation of cJ+\.

and m<) are the messages reporting token consumption, from pk and pj respectively. Figure

3.8 (b) shows the corresponding CDG in presence of cloning.

Theorem 3.15: The BAGC protocol is correct and it generates ^-bounded atomic groups.

Proof: The correctness follows immediately from the logging policy: messages

between fragments with different colors are always logged. Moreover, a

message dependency edge is always recorded whenever there is an un-

tagged message between two fragments of the same color. Since cloning is

assumed with all checkpoints, there is no program-order dependency edge

in the corresponding CDG Hence the CDG satisfies the extended

propemess property (refer to section 3.3.4) and consequently the BAGC

protocol is correct.

Atomicity is ensured that the set S of earliest checkpoints of each process

in the group are consistent: there can never be a message sent by a

member process p, of the group after its checkpoint c,k in S but is received

by another member process pj of the group before its checkpoint c}y in S

without violating FIFO-ness of message delivery, since no message with

this group color is ever received before Cjk-. In addition, within each

checkpoint fragment of the group, the no-logging policy of messages

79

between group members is uniformly enforced on all messages as a

process joins a group before receiving any message from the group.

For /c-bounded-ness, we prove that for each group under formation, (i) at

every step, the number of tokens (taken up or in transit) is equal to k, and

(ii) at any global state, if there is a process interested in joining the group,

then within a finite number of steps there is a future global state such that

the number of free tokens will be reduced accordingly, until the number

of free tokens becomes zero. Property (i) is straightforward and follows

immediately from the fact that each process action preserves the number

of tokens. Regarding property (ii), if a process interested in joining is one

that has just received a message tagged with tokens, it simply joins and

thus property (ii) holds. Otherwise, the process is one that has received a

colored message but the message does not carry any token. It then sends a

request to the initiator. If the system state contains at least one free token,

this token will be forwarded in finite number of steps to the initiator and

eventually to the requesting process. Thus property (ii) must hold. •

The BAGC protocol is simple. Token distribution via message tagging allows a

receiver process to join or re-join a group immediately upon receipt of a message.

Flexibility is introduced by allowing tokens to be redistributed. Explicit reporting of

token consumption enables the initiator to unblock a waiting requestor and is necessary

for progress requirement.

The BAGC protocol can be extended into other protocols. For example, by relaxing

the atomicity into non-atomicity, a token requestor can progress by pessimistically

logging messages from the group it intends to join, without waiting for a token from the

initiator. The resulting protocol satisfies a weak k-bound property: a process that is

80

persistently willing to join a group is not declined unless the limit k has been reached. In

addition, more flexibility can be introduced in terms of token management. For example,

instead of fixing the token adoption at the time of joining, a group member can keep

some tokens that it has received, rather than directly returning them to the initiator.

Furthermore, knowledge propagation through messages can be used for decision-making

and token distribution.

3.4 Remarks

One of the main contributions of this chapter is the generic model of quasi-atomic

recovery block that accommodates both deterministic and non-deterministic recoveries.

The notion of a 'quasi-atomic' recovery block captures the portion of process behaviors

being nullified during a single recovery. This property of quasi-atomicity is very general

and it differs from traditional 'recovery blocks' in the following: quasi-atomicity covers

all kinds of existing checkpoint and recovery techniques, including partial or complete

recovery lines, consistent or inconsistent recovery lines, message playback and discard,

etc. Then an important theorem is proved regarding the correctness of multiple recoveries

within a recovery behavior: every recovery is confined within a quasi-atomic recovery

block, and all blocks should be well-ordered. Well ordering in addition guarantees quasi-

atomicity while capturing potential concurrency among multiple recoveries. This

integrated view provides more general results as compared to other correctness

requirements adopted by the various checkpoint and recovery strategies in the past. The

model hence is not only useful for understanding existing protocols, but also helpful in

developing new checkpoint and recovery strategies.

Another major contribution of this chapter lies in the group-based checkpoint and

recovery strategy. Aiming at a hybrid objective of both reducing runtime overhead and

81

localizing recovery effect, this strategy explores some special characteristics of large-

scale distributed systems, namely locality of message interactions among processes. In

particular, exhibition of 'locality regions' facilitates performing group checkpointing and

selective logging efficiently, which are otherwise expensive to apply or difficult to decide

in a distributed system involving a large number of processes and messages. In group-

based checkpoint protocols hence developed such as AGC and NGC, simplicity and

efficiency are well achieved due to the following reason: group checkpoint coordination

is managed asynchronously via piggybacking invitations over application messages, thus

eliminates needs for synchronization through explicit kernel messages. The resulted

checkpoint protocols are hence non-blocking. Flexibility is also introduced during group

formation (in terms of maintaining group atomicity or not), on the cost of logging a few

extra messages. On the other hand, process cloning is proposed as an effective way of

handling program-order dependency between group checkpoints. As a result, a token-

based BAGC protocol can limit the growth of a group by generating Ar-bounded atomic

groups. Compared with global checkpointing, group-based checkpoints are localized

without involving the entire universe of processes, and recovery spread is restricted to

relevant group members only. In contrast to log-based approaches, there is no much

message logging at run time as well as message playback during recovery. In other words,

runtime performance is greatly improved as the cost of both global-wise checkpoint

coordination and necessity of logging all messages is avoided. Locality of message

interactions plays an important role in both aspects.

Recent reports from the parallel computing community seem to have justified the

feasibility of the group checkpoint strategy. Similar strategies are adopted for MPI jobs

[GHK+07, HWL08] and grid computing tasks [MSM08], not very long after the

introduction of the work presented in this chapter [WLG05, LWG06, WLG06], In

82

particular, each MPI job or grid task consists of multiple processes, which are divided

into several groups and checkpointed separately in a group-wise manner. Inter-group

messages are logged [HWL08, MSM08] or deferred (until all group checkpoints form an

actual global checkpoint for the job) [GHK+07]. Group formation is based on the

characteristics of job units (i.e., sub-jobs or sub-tasks). Besides the above similarities,

these strategies are much simpler, compared with the AGC or NGC protocol. For

example, in these strategies, consistency of group checkpoint is mandatory. In addition,

the grouping of processes is only for the purpose of reducing global checkpoint latency

[GHK+07] or preventing catastrophic global recovery of the whole grid [MSM08]. In

[HWL08], a communication tracer is used to monitor and identify intensively

communicating processes, and groups are formed based on the trace analyzer. However,

unlike distributed systems, MPI programs are much more sensitive to network delay

instead of the communication pattern itself. This strategy hence might be only subject to

physical locality, e.g., it is better applied to the processes within the same cluster.

83

Chapter 4

Locality of Message Interactions

Message passing distributed systems are widely used in resolving large-scale problems

like e-commerce and supply-chain management [WGP03, MLY06]. Such a system

usually consists of a large number of messages and processes that tend to exhibit specific

interaction patterns. In particular, messages are not distributed uniformly or arbitrarily

among processes; rather they are quite localized around groups of processes over a period

of time. For example, in an agent-based manufacturing process system [PBC01, Dee03],

a sales agent might interact only with a few other agents including a customer, a sales

manager and possibly some stock managers until a product order is approved or declined.

During this negotiation process, all participating agents form a rather exclusive group,

where they frequently interact with each other and their corresponding lifelines form a

message-intensive sub-region in space and time. In many distributed applications, such

regions are observable over the whole execution, containing the majority of all messages

and leaving only a few messages in between. Each region hence forms a distinct locality

of message interactions, which might display as different patterns in various applications.

Such locality phenomenon is a new observation and is clearly different from the one

captured by the traditional locality notion [Bel66]. In the literature, relevant studies have

been reported mostly on the caching problem of memory references [Den68] and web

references [JBOOa, JBOOb, FAC+03], where locality is modeled as a recurrence pattern

84

over time, and is measured by the overall caching performance. Further study also shows

existence of fine-grained recurrence structures and their hierarchies within both memory

and web references [MB76, CCOO]. Locality of message interactions, however, is about

recurrence structures spreading over both space and time. Unlike in the totally-ordered

time dimension, there is no such a concept of 'spatial distance' among processes, making

the existing research methods no longer applicable. A new approach is hence required for

understanding the properties about locality of message interactions, in particular, the

origination and formation of message localization, the identification and measurement of

locality patterns, and their availability as well as characteristics in distributed applications.

In general, locality is intrinsic to every computation due to localization of internal

data dependencies. Traditional locality of memory references arises from the

sequentialization of such dependencies resolved by local memory variables. Locality of

message interactions comes from decomposing a computation into sub-tasks and

resolving the inter-task dependencies via message passing. The hierarchy of localities

naturally is often formed based on hierarchical organization of computations. In most

cases, a distributed execution only comes with plain information about a set of partially-

ordered message events. Due to lack of design time knowledge of the system, it is

impossible to pin-point the localities corresponding to each sub-task. Even though, some

ideal or simple locality patterns can still be easily identified, because certain locality

properties they preserve can illustrate the actual design purpose. For example, a group of

processes with no external communications can locate each other as group members by

following the path of any message interaction. Similarly, a process group with only a few

external messages can be identified via the path of frequent message interactions.

Intuitively, such simpler locality patterns have more localized effect of messages, and are

also more identifiable. A study on locality properties of such patterns would give rise to a

85

reverse engineering approach, by which detection of these properties will lead to effective

identification of the corresponding localities. Since most distributed applications tend to

employ simple synchronization protocols as well as communication patterns, this

approach is expected to work in most cases.

An ideal or 'good enough' locality of message interactions usually observes the

following properties: i) it contains most or even all associated messages inside and hence

have a small percentage of external messages; ii) each pair of participating processes are

tightly coupled via frequent message interactions with each other, directly or indirectly;

iii) each participating process has a distinct interval of localized interactions almost

exclusively with other participants. Consequently, identification of such a locality can

start from investigating those localized interaction patterns within individual process

lifelines. Such identified interaction intervals can be, grouped together via the

connectivity of frequent message interactions among them, and the resulted regions of

localities are expected to have a small percentage of external messages.

This chapter presents detailed results and discoveries on locality of message

interactions developed based on the above discussion. Chapter 4.1 reviews existing

research works on locality of memory references and web references, etc. Chapter 4.2

discusses the origination as well as formation of locality of message interactions due to

computation parallelization in message passing distributed systems. Chapter 4.3

introduces a generic notion of 'locality interval' for capturing popular recurrence patterns

within individual process lifelines. Also discussed are issues regarding detection of

locality intervals and formation of 'locality regions' via frequent message coupling

among these intervals, based on plain knowledge about a given distributed execution.

Chapter 4.4 presents experimental results on 'static' execution traces of two example

distributed applications, including the traditional locality views of individual process

86

lifelines, identification of locality intervals from different processes, and characteristics

of locality regions hence formed. Chapter 4.5 brings out the contributions of this chapter

and compares the results with related work.

4.1 Traditional Locality of Reference

Locality of reference, also known as the principle of locality, is a phenomenon of

continuous recurrences around the same subset of objects (among others). It was first

observed as a process's references to entities in memory caching systems [Bel66], and

was characterized by the well-known "working set" model [Den68], An important

property of such a "reference sequence" or "reference string" [Den70] is established

based on the property observable at a time instance as "bursts of references are made in

the near future to objects referenced in the recent past" [Van05], Studies have been

reported mostly on the caching problem of memory references [Bel66, Den68, DS72] and

web references [JBOOa, JBOOb, MEWOO], where locality is related to the overall caching

performance, e.g. in terms of hit ratio [MGS+70], lifetime function [Bel69] and miss rate

[Van05]. Then further study shows that a reference string of both memory and web

references contains fine-grained structures called "recurrence patterns" [Van05]. This is

reflected by the property of a time period as "for relatively extended periods of time, a

program references only some subset of its name space or virtual address space" [MB76],

Related studies focus on qualitatively characterizing the existence as well as the hierarchy

of ideal recurrence patterns named "Bounded Locality Intervals" [MB76], and

stochastically modeling a reference string as a "phase-transition behavior" [DK75] for

synthetic trace generation. In general, locality of reference is about localized recurrences

along the timeline of a sequential behavior, with fine-grained structures in terms of

recurrence patterns.

87

4.1.1 Localization of Recurrences
page references

G G G G E A F B C D A B C D D D C D D D A B C D D D C D D D
1 | 1 I I I I I v,
I 5 9 1 7 2 1 2 5 2 9 ^

virtual time

Figure 4.1 An example reference string from a program behavior

Locality of reference was discovered from improving the performance of virtual memory

[KEL+62] in computer systems. With the innovation of storage hierarchy and paging

mechanism, pages loaded in main memory need to be replaced by pages from the disk

upon page faults. Since a page fault introduces a significant delay due to the much slower

disk access, the replacement algorithm should efficiently minimize page faults, and hence

improve the hit ratio [Mat71]. This consequently raised the question of which pages are

essential to a program and which are replaceable, and eventually led to the introduction

of the "working set" notion. Given a sequential program, a working set W(t, x) is defined

as the set of pages it has referenced in the virtual time window of length x preceding time

t [Den68]. Here virtual time is measured by the number of memory references, and the

sequence of pages being referenced along virtual time is termed as a reference string

[Den70], Figure 4.1 shows an example reference string, where the working set at virtual

time t = 9 with a window length x = 4 is W(9, 4) = {A, F, B, C). A working set fV(t, x)

constitutes a good prediction of an immediate future working set W{t + a , x) for a small

time a. Intuitively, pages referenced in the past are highly likely to be reused in the near

future. Such an assumption was justified in many application programs, where long

phases of memory references were observed around relatively small page sets. An

example behavior is illustrated in Figure 4.2, where dots depict references to the

corresponding page space at the given virtual time.

The term locality was then used for the observation that a program behavior clusters

its references around small subsets of pages for extended intervals. Two types of such

88

clustering were distinguished, namely temporal and spatial locality. The former is about

the tendency of repeatedly referring to a same page, which could be due to looping,

subroutine, and modular execution with private data. The latter is about the likelihood of

adjacent pages being frequently referenced, which might be caused by related data being

grouped and stored together or closely, e.g. arrays and sequential codes. Temporal

locality encourages caching and spatial locality encourages prefetching of related objects.

Both reflect the use of a generic problem-solving strategy: divide and conquer. In other

words, a large problem is divided into sub-tasks which are then processed sequentially in

a particular order. Locality of memory references is the localization of data accesses

related to individual sub-tasks.
space (addresses)

time
(phases)

Figure 4.2 Locality behavior observed during program execution [Den05]

The locality principle together with the working set model brought new insights to

understanding program behaviors. It benefits directly the prediction of a program's future

memory needs, as employed in various page replacement algorithms. Intuitively, upon

page fault, it is better to replace the page that is most unlikely to be reused in the future,

i.e., whose removal will introduce maximum references until the next page fault. Locality

of reference indicates that during any interval of execution, a program favors a subset of

89

its pages, whose membership changes slowly. In particular, a page being referenced more

recently has a larger probability of being referenced again in the immediate future. The

well-known LRU (least-recently-used) algorithm follows this principle by employing a

stack that keeps the m most recently used pages (where m is the stack size in terms of

pages) and was considered as the best performer among others [Bel66].

Page references

G G GG E A F B C D A B CDDDCDDDAB C D D D C D D D
I I I I I I I I ^
1 5 9 13 17 2 1 2 5 2 9 ^Virtual time

o o l 1 1 o o o o o o o o o o o o 5 4 4 4 1 1 2 2 1 1 4 4 4 4 1 1 2 2 1 1 Stack distance

, (g } , fl {D^ S BLI(i=l)

, { C , D) , | | BLI (;' = 2)

M C . P) BLI 0 = 4) 1

Figure 4.3 Stack distance and bounded locality intervals over a reference sting

Locality of reference is an experimentally observed phenomenon, and might not hold

all the time. This certainly has impact on the overall performance of the replacement

algorithms, which in turn can be used to evaluate the corresponding locality. For example,

a program behavior with good locality, when applied with the LRU algorithm, will show

good performance, in terms of large hit ratio, small miss rate of pages, etc. However, such

a performance is subject to the size limit of LRU stack used in the algorithm, rather than

the specific program behavior. A notion of "stack distance" or "recurrence distance"

[MGS+70] was introduced based on LRU stack and can be used as the locality measure of

a given behavior. Upon virtual time t, an LRU stack S, has its topmost n entries (5,(1),

s,{2),..., s,(n)} keeping the n most recently referenced pages. Suppose the page x, at t has

been previously referenced, it hence can be found in the stack, say at position i. The stack

distance A, at time t is defined as A, = i if x, = st(i), and A, = oo if x, has never been

referenced. Here At is the stack capacity required for avoiding a page fault at time t.

Figure 4.3 shows the stack distances for the example reference string in previous

discussions. More importantly, the average stack distance A over the timeline of a

9 0

program behavior measures the expected stack capacity for its proper execution. In

addition, the normalized stack distance A/P (where P is the total number of all referenced

pages) shows how localized a behavior is around small subsets of pages.

As an empirical result, reference locality is observable in many areas of computer

science. It has been applied in designing operating system, database, and hardware

architectures. The mechanism of caching or prefetching frequently-used objects is

considered as a fundamental principle for performance acceleration. Besides, the locality

principle also holds in networked environments, such as system-level network packet

traffic and application-level web page references [CCOO], web searching requests

[MSA+08], and P2P data streams [CW06], Packets are the basic units of network traffic

between pairs of nodes, and are usually resulted from partitioning a big file being

transferred between the same pair of source and destination nodes. Consequently, packets

form streams of network traffic and exhibit temporal locality [JR86], Also, page requests

arriving at a web server exhibit reference locality, which is reflected by a small stack

distance [ABC+96]. In fact, "10% of the file accessed on the server typically account for

90% of the server requests and 90% of the bytes transferred" [AW96]. This implies that

certain web documents are really popular than others and hence better remain in the

server caching system. On the other hand, client-side web browsers already take

advantage of reference locality by caching the most frequently browsed pages. In general,

locality of reference follows human practice of problem solving, and hence is critical to

performance improvement.

4.1.2 Recurrence Patterns

The principle of locality asserts that during any period of time, a program behavior favors

a subset of its reference pages, which tends to change slowly. The working set of

immediate past tends to be quite similar to that of immediate future, making it possible

91

for mechanisms like caching and prefetching to work efficiently in memory management.

However, correlation between disjoint reference patterns tends to be low as distance

between them tends to large. Programs rather make transitions from time to time among

different localities, each formed by a distinct subset of pages. This is described as "phase-

transition behavior" [DS72], by which a program behavior is regarded as a sequence of

phases, each covering a sequence of references over an associated "locality set". In

general, a phase corresponds to a program's residency within a sub-task, while a

transition is due to termination of the current sub-task and move-forward to the next one

that establishes a new locality.

The phases can be modeled by a notion of "bounded locality intervaF (BLI) [MB76],

a maximal interval in which LRU stack distance does not exceed a given i and every one

of the topmost i stack objects is referenced at least once. The set of topmost i stack

objects remains active within the whole interval, and is hence called the activity set for

the corresponding BLI. Figure 4.3 shows BLI's as well as their activity sets for i = 1,2,

and 4 within the previous example reference string. Since a stack distance At < i implies

that one of the most recent i objects is re-referenced, a sequence of such time points

captures the localization of re-references to these i objects over time. A BLI starts from

the time when its activity set first occupy the topmost i positions of the LRU stack, and

ends upon a reference to some new object no longer within its activity set. It is a rather

'distinctive' phase where a program has a stable and predictable working set. Between

such phases are transitions where a program changes its working set, usually quite

significantly. Formation of an activity set is a part of the transition preceding the

corresponding BLI.

Given a particular i, BLI's can be detected based on calculation of stack distances.

Denote them the level i BLI's. Clearly the BLI's at the same level are disjoint from each

92

other. As shown in the above figure, a level i BLI is properly contained within a level i +

n (n > 0) BLI that covers the same time point. The properness of this subset relationship

is easy to prove using stack distance. The hierarchy of BLI's captures the hierarchical

nature of task decomposition in sequential program design and development. In particular,

the low-level BLI's contained within a same high-level BLI correspond to sub-tasks

resulted from decomposing the same task. Associated experiments [MB76] on actual

program behaviors confirm the existence of "phase-transition behavior". Moreover, the

outermost level of BLI's captures the major phases of program execution, which covers

the majority of program lifetime, with transitions between nearly disjoint activity sets.

The inner levels, on the other hand, are shorter phases with relatively more overlapping

activity sets. These results reflect the following intuition of program design: after the

high-level task decomposition, there are fewer inter-dependencies between the resulted

coarse-grained computations; in comparison, low-level sub-tasks are much more inter-

related in terms of data references.

Following the above results, a program behavior can be modeled from two levels

[DK75]: a macro model that captures the phase-transition behavior, and a micro model

that specifies the reference patterns within phases. Experiments confirm that such a

model is capable to mimic program behaviors with observed properties, e.g., in terms of

re-producing the same type of LRU lifetime function [Bel69] curves. The modeling of

phase-transition behavior is critical: without the macro model, it would be incapable of

synthesizing program traces featured with the known properties.

The existence of phase-transition behavior has specific effect on the page

replacement algorithms. The efficiency of such algorithms is mostly based on the locality

principle, i.e., stable working sets and their associated long-life phases. A reference string

with a high rate of phase transition is a phenomenon of'anti-locality': the program is not

93

localizing its references around a subset of objects; rather it is trying to reference more

objects within a small time interval. With the increase of phase transition rate, it would

not be surprising that the responsiveness of replacement algorithms will largely degrade

[Mas77], Both caching and prefetching do not work efficiently as the working set of

immediate future is no longer predictable based on that of the immediate past. Fortunately,

as discussed above, disruptive transitions across disjoint locality sets are only between

high-level major phases. Programs drift between low-level phases that have rather

overlapping locality sets. This guarantees that replacement algorithms would work

efficiently for most of the time during program execution.

Recurrence patterns like phase-transition behaviors also exist in web reference

streams [ABC+96] and data streams [LCK+06], as termed "correlation structures" and

modeled using stack distance self-similarity. In general, the locality of web references can

be attributed to two reasons [JinOOa]: long-term popularity of frequently-requested web

documents, and short-term correlation of concentrated requests. The former reflects the

absolute closeness of references to objects that are popular over the whole reference

string. The latter refers to the relative closeness of references that are localized only for a

particular period of time. Obviously the latter is related to existence of recurrence

patterns and is different from the former. Like phase-transition behavior in modeling

program behavior, short-term correlation is critical to web reference characterization and

is related synthetic trace generation. It can be measured by scaled stack distance [CCOO],

a stack distance normalized by the expected stack distance of the same object, assuming

uniform distribution of references to different objects. The scaled stack distance is

insensitive to popularity, and is hence used to recreate stack distance patterns that

preserve short-term correlation. A comprehensive comparison of related work on

modeling web references could be found in [Van05].

94

Traditional locality of reference, either to memory pages or to web documents, is

about a sequence of occurrences that are ordered along an individual timeline. In

distributed systems, processes and messages create partial ordering among relevant

events, making traditional locality apparently no longer observable. However, the next

chapter shows that in fact the locality principle still holds in terms of message

interactions.

4.2 Origination of Interaction Locality

In general, a computation can be viewed as a set of operations ordered by data

dependencies between each other [HP03], When taken into implementation, it is usually

first decomposed into a number of sub-tasks. As an application of the widely-used divide-

and-conquer strategy, the decomposition is not performed arbitrarily. A major principle or

guide line is to minimize the inter-dependencies among resulted sub-tasks, as well as to

maintain an adequate number of sub-tasks. Intuitively, this helps proper management of

the task structure, and has been considered as effective in many engineering fields

including software engineering [ATG08], Program design techniques, such as modularity,

encapsulation, and data abstraction in object oriented programming [Weg90], provide full

support to this principle. Consequently, the majority of data dependencies are hidden

inside those sub-tasks until further decomposition is applied to them. The hierarchical

nature of divide-and-conquer implies that there are always more fine-grained

dependencies localized in the lower-level sub-tasks.

Control dependencies come into the picture when the sub-tasks are programmed in a

sequential or parallel manner. In a sequential program, data dependencies are resolved via

references to memory variables, and control dependencies are established to maintain the

sequential ordering of memory references. A sub-task corresponds to a sequence of

95

memory references localized around a small data set. In addition, sub-tasks are

sequentialized along time, and in most cases such sequentialization is performed

hierarchically. In other words, a children sub-task is usually ordered before any successor

of its parent task. As a result, a sequential program drifts its residency between children

sub-tasks until their parent task ends. The corresponding working set hence changes

slowly except at major task boundaries, and the phase-transition behavior therefore is

only explicit at the outermost level of program execution. Since data dependencies are

most localized at the lowest level of task granularity, traditional locality of reference is

actually a phenomenon about localization of the finest-grained dependencies.

A distributed application, on the other hand, is a parallel solution in which sub-tasks

are first parallelized and then distributed among groups of processes. Sub-tasks

decomposed from the same task are usually assigned to the same process group. Each

process is a sequential program, and hence has its own local data and control

dependencies. In addition, there are two kinds of global dependencies established across

different processes: the former is global data dependency resolved by variable reference

messages, while the latter is global control dependency resolved by process

synchronization messages. Such messages span sub-regions in both process space and

time. In particular, each sub-task corresponds to a region that involves a number of

processes as well as messages. Due to the hierarchical nature of task organization, sub-

tasks belonging to the same parent task are managed adjacent to each other in space and

time. Consequently, since fine-grained dependencies are more localized in low-level sub-

tasks, regions corresponding to high-level tasks are relatively distinctive from each other

as there are fewer messages in between. Moreover, each region involves a specific subset

of processes that collaborate towards resolving the same task, and the membership of this

subset remains quite stable until the end of region. A distributed execution hence exhibits

9 6

a 'region-transition' pattern, which is quite similar to the phase-transition behavior

observed in sequential programs. In other words, though each process still exhibits

traditional locality of memory references from its local perspective, the locality principle

also holds globally in terms of message interactions. Obviously, these two types of

localities differ from each other, as one refers to recurrences of dependency pairs (i.e.,

messages) while the other refers to recurrences of individual dependencies. This thesis

studies the former and uses the term locality of (message) interactions, or interaction

locality to distinguish it from other locality notions.

In a distributed execution, global locality of interaction co-exists with local locality

of reference. These two types of localities are properly nested in two different levels of

the task hierarchy. In particular, reference locality is about memory references that

resolve local dependencies, which are at the finest granularity and are only available

within the lowest-level sub-tasks of individual processes (e.g., behavioral fragments as

defined in Chapter 3.2.1). Interaction locality, on the other hand, is about messages that

resolve inter-process dependencies, which are at a coarser granularity for maintaining the

partial ordering between low-level sub-tasks from different processes. Usually in a

distributed application, inter-process dependencies form only a small portion of all

dependencies. Message interactions are hence much less frequent than memory accesses

in individual processes. Unlike traditional locality that is observable almost in every

program, interaction locality is only explicit in large scale distributed systems.

Locality of message interactions benefits largely from distributed system design and

development techniques. Hierarchical task decomposition as well as modular component

design is supported by popular distributed or parallel programming paradigms. For

example, parallel architectural skeletons [GSP99] and synchronization skeletons

[WLG04] support hierarchical composability. Parallel design patterns such as master-

97

slave, pipeline, divide-and-conquer can be used as building blocks to form larger patterns,

from either architectural or behavioral aspects. This makes it much easier to parallelize a

computation and manage the resulted sub-tasks in different levels of granularity. Also,

agent role model [KenOO] and coordination protocols [DWK01] provide support for

managing agent interactions in terms of communication patterns. Such patterns, namely

blackboard, meeting, market, etc., can be constructed and implemented using small pre-

specified communication routines termed agent interaction protocols [FIP03]. Each

interaction protocol might involve several rounds of synchronization messages between

two or more agents, for achieving a simple goal such as requesting, querying, contracting,

brokering, etc. In addition, there are agent platforms and frameworks [BPR99, SSS+99,

PPGOO, MBS03] that provide development and runtime support to the above techniques.

As a result, interaction locality becomes a popular property of distributed applications.

4.3 Identifying Interaction Locality

Interaction locality could appear in different ways within a distributed application.

Intuitively, a locality of messages corresponds to a 'distinctive' space-time sub-region,

where processes exchange messages more intensively with each other compared with

outside. In an ideal case, a locality might have no external messages at all and hence is

very easy to locate. Alternatively, there could be more or less inter-locality messages so

that the locality boundaries become ambiguous and localities are difficult to distinguish

from each other. It is obvious that a locality of messages indicates the coverage of a

corresponding sub-task over space and time. In general, the above ideal case is rare and

might only be observable at a high level of task granularity, when several independent

sub-tasks are executed in parallel. The non-ideal case, on the other hand, is much popular

especially for low-level sub-tasks, which are likely to be inter-coupled together towards

98

resolving a major task. Since more messages are hidden inside lower-level sub-tasks, the

intensity of messages usually implies the locality granularity. Consequently, identifying

lower-level localities will be more difficult and the result will be less accurate as well.

As discussed in Chapter 4.2, interaction locality can be pictured as a hierarchical

region-transition behavior. For a given distributed execution, identifying localities is

actually about finding the corresponding regions at different levels. Each region, in turn,

is indexed by its hierarchy level, say i, and can be obtained from decomposing its parent

region at level i - 1. Intuitively, this process can be applied recursively to a given

distributed execution and all levels of localities will be hence identified. However, a

distributed execution contains only finest-grained runtime information about processes

and messages. Due to lack of design time knowledge about the hierarchy organization, it

is not feasible to directly apply such a global-wise decomposition strategy. In particular,

the decomposition at topmost levels is likely to incur great complexity, as it has to deal

with large scale regions containing intensive messages and events. On the other hand,

finding localities is different from just decomposing a distributed execution into a set of

disjoint and complementary regions. For example, there could be a few asynchronous or

random messages, which are not a part of the system design and hence do not belong to

any locality at all. In other words, a set of properly identified localities need not cover all

messages or events. Rather, they are natural localizations of messages corresponding to a

set of by-design sub-tasks. From this perspective, the identification results are verifiable

against the design information of the given distributed application.

Identifying localities of a given distributed execution is to abstract its hierarchical

locality structure based on the plain message pattern it provides. It is more natural to

follow a bottom-up approach, i.e., by starting from small locality entities and composing

them into larger ones. For example, a distributed execution can be considered as initiated

99

by a set of special processes, say task initiators, whose first event is a send event. Each of

these processes proceeds by spanning its own set of interaction partners and hence forms

a locality of corresponding messages. In certain cases, two or more localities might merge

into one when many enough messages are exchanged between them. A locality terminates

after its task is accomplished, and the rest of distributed execution continues with new

initiator processes towards forming new localities. The above procedure captures the

formation as well as transition of localities from the perspective of individual processes.

Within each locality, the involvement of a participating process forms a sub-sequence of

localized interactions which are almost exclusively with other participants of the same

locality. Due to the region-transition behavior between adjacent localities, such a

sequence is usually distinctive by itself and hence can be identified locally. On the other

hand, sequences from different participants of the same locality are often tightly coupled

by message interactions, directly or indirectly. This makes it possible to find a locality via

the coupling relations between individual sequences. In other words, these properties are

likely to be preserved by distributed executions with good interaction locality, and can be

used to guide the identification of localities.

This chapter evaluates the above idea and proposes models as well as techniques for

constructing localities based on detection of individual locality entities. In particular, a

notion of 'locality interval' is introduced to model a popular locality pattern of individual

process interactions: a process interacts almost exclusively with a subset of recurring

partners and its corresponding lifetime forms a distinct interval of localized interactions.

Between locality intervals from different processes, an 'important coupling' relationship

can be established based on the frequency of their message interactions. The transitive

closure of important coupling then forms 'locality regions', each of which is distinct

space-time sub-region that covers majority of its associated messages inside. On the other

100

hand, locality intervals are hierarchical in nature, and so are the locality regions. The

bottom-up approach allows locality regions to be identified via controlling the creation of

locality intervals at a certain level. Consequently, there will be hierarchical locality

regions that are very likely to correspond to sub-tasks at different levels of the task

decomposition. The rest of this chapter will use the term 'level' to refer to that of the by-

design sub-tasks, as well as that of the corresponding locality regions or locality intervals

to be identified.

4.3.1 Locality Interval

A distributed system consists of a set of processes that interact with one another only

through messages. Each message m is a set of two events, a send event send(m) and a

receive event recv(m), associated with a sender process and a receiver process

respectively. Message events of a same process are totally ordered in virtual time [Den68],

and each of them is associated with a specific partner. Message events from different

process are partially ordered under Lamport's happened-before relation [Lam78]. A

distributed execution is modeled as the partial order of all message events that occur

during an execution of a distributed system. Within a distributed execution, the sequence

of all message events associated with a process forms its lifeline. Similar to the notion of

"reference string" in memory references, any sub-sequence of message events within a

process lifeline is termed an interaction string. For simplicity, a distributed execution or

an interaction string is represented by the corresponding set of involved events. Given an

interaction string S, of a process pj in a distributed execution E, St a E and S,(t) denotes

its tih message event (for any virtual time t > 0). Consequently, a sub-sequence of S, that

starts at Si(t 1) and ends at S,(tn) is denoted as Si[t\, tn] (t„ >h> 0).

A process lifeline often observes intervals of localized interactions with the following

properties: i) recurrence: such an interval consists of many message events around a

101

small subset of partners and hence most events are recurrences; ii) migration: the set of

(frequent) partners of an interval tends to change as the process lifeline proceeds, and

consequently the process migrates from one interval to another; iii) hierarchy: a same

time instance might be covered by different intervals observable at different granularities,

each associated with a unique subset of partners. Such an interval can be demonstrated by

the similarity between the recent past and the immediate future of a time instance.

Within an interaction string Si, given k = 1, 2, 3, ..., a past window JV.(t, k) at time

instance t is defined as the maximum sub-sequence of Sj that ends at t and involves k

partners. Similarly, a future window W+(t, k) at t is the maximum sub-sequence of 51, that

starts from t and involves k partners. Denote the corresponding partner sets of W.(t, k) and

W+(t, k) as s.(t, k) and s+(t, k), respectively. Note that by definition W.(t, k) n W+(t, k) =

,S,[/, t], Process p, is said to have a rank-k locality at time t iff there exists k > k such that

s.(t, k) 2 s+{t, k). In other words, the immediate future starting at t will be all recurrences

of a subset of k partners out of its k most recent partners. The ranking k estimates

approximately the number of frequent partners in this locality. Notice that s.{t, k") 3 s+(t,

k) holds for any k" > k. However, there is a minimum k* > k such that s.(t, k*) 3 s+(t, k).

The set of k* past partners is unique as it defines the exact space of objects localized at t.

It hence is called the locality set of this rank-A: locality and is denoted as l(t, k). Also, it

has a continuous lifetime that forms a distinct locality interval within Sj.

Definition 4.1 (Locality Interval):

Given an interaction string Si of process piy a locality interval L(t, k) is the sub-sequence

of Sj that is covered by the past window W.(t, k*) and the future window fV+(t, k) at time

instance t, where pi has a rank-£ locality with a locality set of k* partners.

Figure 4.4 shows an example interaction string Si of a process p\, where each

102

message event is labeled as the corresponding partner. It is observable that p\ has a rank-2

locality at t - 5, since k = 2 partners {B, D} among its k = 3 past partners {B, C, D} have

recurrences at the immediate future, i.e. in its future window fV+(5, 2) ~ Si[5, 7], Here k*

= 3 and /(5, 2) = {B, C, D). The corresponding locality interval 1(5, 2) = 5, [3, 7].

A A B C D B D E F G H F G F F G H I J I HKLKL Message events
I 1 I I I ^
1 5 9 13 17 21 25 Virtual time

| W | | {F} | Locality Interval (it* = 1)

1 { F ' G) I I { / I I { K ' L] I Locality Interval (lc = 2)

I C'D] I | {F,G,H} 1
 |

{ / / ' / ' y } 1 Locality Interval {k~ = 3)

Figure 4.4 Hierarchy of all locality intervals in an interaction string

By definition, there is a rank-1 locality at each time instance t of an interaction string

Si, whose locality set involves exactly the partner at t. The corresponding locality interval

usually cover only a single event Sj(t) and hence is called a singleton interval. However, it

might not always be a singleton as the process could continuously interact with a same

partner. The locality interval L(1, 1) = 5i[l, 2] in Figure 4.4 is such an example. If

process pt has no rank-it locality at a certain time instance t, then l(t, k) = 0 . In Figure 4.4,

there is no rank-3 or higher rank locality at t = 5, therefore 1(5, k) = 0 for any k> 3.

A locality interval usually consists of three stages: a prefix, a midfix, and a suffix.

Given a locality interval Lit, k) with a locality set of k* partners, prefix(L{t, k)) is defined

as the minimum sub-sequence that starts from the beginning of L(t, k) and involves k*

partners. Similarly, suffix(L(t, k)) is the minimum sub-sequence that terminates at the end

of L(t, k) and involves k* partners. The sub-sequence between the prefix and the suffix, if

exists, is midfix(L(t, k)). As an example, the locality interval Z(l l , 3) in Figure 4.4

consists of a prefix S] [9, 11], a midfix 5"] [12, 14] and a suffix S] [15, 17]. Each locality

interval has a seed, which is defined as the last time instance of its prefix. Since prefix(L(t,

k)) involves all k* partners of l(t, k), any message event occurred after the seed is a

103

recurrence event, and the corresponding partner is predictable by l{t, k). In general, the

prefix captures the rising stage of a locality interval where partners begin to appear and

form its locality set; the suffix captures the falling stage where partners begin to leave the

locality set; the midfix captures the stable stage where all partners have recurrences at

each time instance. It is possible that in some locality interval L(t, k), its prefix might

overlap with its suffix, e.g. L(5, 2) in Figure 4.4. Such an interval is 'non-ideal' as some

partners within l(t, k) might have no recurrence at all. Hence in such a case k* > k. The

notion of "Bounded Locality Interval" [MB76] actually captures an 'ideal' locality

interval where every partner must have recurrence after the seed. Therefore within such

an interval k* = k always holds. Note that a bounded locality interval might still have no

midfix, e.g. 1(23, 2) in Figure 4.4. Good locality of an interval is reflected by a small k*

that is close to k.

A locality interval L(t2, k2) is said to be contained within another one L(t\, k{)

(written as L(U, k\) ID L(t2, k2)) iff V t e L{t2, k2): t e L{t\, k\). For example, given k\ > k2

> 0, a process could have localities in both rank-A:i and rank-fe at a same time instance t.

Consequently l(t, k\) ZD l(t, k2), and L(t, k2) => Lit, k\). In such a case, L(t, k\) is called a

child interval of Lit, k2) and L(t, k2) is the parent interval of Lit, k\). In Figure 4.4,1(18, 3)

ID Z/(l8, 2) and these two intervals have the same seed t. It is also possible that a child

interval might not cover the seed of its parent, e.g., in Figure 4.4 Z(ll , 3) 3 /(13, 2) but

Z(13, 2) doesn't cover the seed Si(ll) o f Z (l l , 3). Given a process lifeline, each locality

interval L(t, k) with l(t, k) ^ 0 can be identified. The containing relationship hence builds

a hierarchy of all intervals in different granularities. It is worthwhile to note that some

time instance t within an interaction string might only be covered by a singleton locality

interval L(t, 1). Figure 4.4 shows the hierarchy of locality intervals that exist in the

interaction string S\. For simplicity, all singleton locality intervals are omitted. It is clear

104

that the ranking of locality intervals is related to their hierarchy as well as their

corresponding sub-tasks at different levels. For two locality intervals that one contains

the other, a higher rank implies a higher level. However, this does not hold for all locality

intervals. In fact, determining the level for a specific locality interval requires statistical

information of its process lifeline and will be further discussed in Chapter4.3.

Two locality intervals overlap if they are not contained in each other but cover a

same sub-sequence. For example, in Figure 4.4Z,(11, 3) nZ,(18, 3) = 5'i[17, 17]. In such a

case, L{ 11, 3) is called a predecessor and L(18, 3) is a successor. It is easy to prove that

the intersection of two overlapping locality intervals is a sub-sequence of the

predecessor's suffix and a sub-sequence of the successor's prefix as well (otherwise it

will involve some part of a midfix, and consequently one interval will contain all

members of the other, which contradicts the definition of overlapping). An intersection is

the transition stage between two consecutive locality intervals, where a process migrates

its locality set from the predecessor to the successor.

4.3.2 Important Coupling and Locality Region

In a distributed execution, message interactions establish a coupling relation between

interaction strings from different processes: an interaction string Si of a process pi is

coupled with interaction string Sj from another process pj * p; (written as 5, Sj.) if

(i) there exists a message m such that send(m) e S, and recv(m) e Sj or vice versa, or

(ii) there exists an interaction string Sk such that Si <-> St and Sk Sj.

Message coupling could also spread among multiple processes. As a result, the

corresponding interaction strings and messages occupy a sub-region in space and time,

which is called an interaction region.

Definition 4.2 (Interaction Region):

An interaction region of a distributed execution E is the set of message events within a

105

subset S of interaction strings in E where V S„ Sj e S: Sj o Sj.

In other words, transitive closure of coupling relation leads to formation of

interaction regions. Any two processes, say pi and pj, of an interaction region R should

have corresponding interaction strings St a R and Sj cz R such that St <-» Sj. Call Si, Sj as

components of R. Consequently, for any message m coupling S, and Sj, m cz R (m is hence

called an internal message of R). In addition, it is possible that there exists some external

message(s) coupling a component string with a non-component string, in which case the

interaction region does not contain all associated messages. An interaction region R is

called atomic iff V m: send{m) e R o recv(m) e R, i.e., all message associated with an

atomic interaction region are internal messages. Within a distributed execution, atomic

interaction regions are all disjoint from each other in space and time, and there is no

message coupling in between.

Locality intervals, which are interaction strings preserving specific locality properties,

usually have coupling relations between each other. Transitive closure of the coupling

between locality intervals forms atomic interaction regions. However, such regions hide

too much information about interaction locality, and hence could not demonstrate the

natural localization of messages. For example, in many distributed applications, there are

system maintenance processes sending a few asynchronous messages to others from time

to time. As a result, many processes have their locality intervals coupled together and

form a large but somewhat loosely-coupled atomic interaction region. This however does

not reflect the fact that there are small but more tightly-coupled groups of processes

inside such a region. Also, there are processes which only participate in a task for a few

rounds of negotiation and decide to turn to another task afterwards. Similarly, this leads

to an atomic interaction region where a few messages couple two tightly-coupled groups

that are performing two different tasks. All these facts show that within atomic interaction

106

regions there are fine-grained locality structures caused by the differences in coupling

strength.

The strength of coupling between two locality sequences is directly related to

occurrences of corresponding partners. Within a locality interval, partners have different

importance in terms of their occurrence frequencies. In fact, observation shows that the

distribution of their frequencies is usually bi-modal: there is a group of important

partners each with many occurrences, among the rest of occasional partners each with

much less occurrences. Non-recurring partners in 'non-ideal' locality intervals are

examples of such occasional partners. Usually important partners are the major co-

workers of a process that are persistently performing a sub-task, and they often appear as

common partners of overlapped locality intervals. Occasional partners on the other hand

could be either temporary co-workers that interact with a process for only a few rounds of

handshaking, or some system maintenance processes that contact a process only through

asynchronous messages. Such distinction between important and occasional partners

reflects the hierarchical nature of interaction locality. In particular, important partners

perform fine-grained intra-task interactions for accomplishing a sub-task, while

occasional partners incur coarse-grained inter-task messages for sub-task coordination

and management. In practice, identification of important partners can be based on

detection of bi-modal distribution of interaction frequencies of partners, and is further

discussed in the next chapter.

An important coupling relation can be established between two inter-coupled locality

intervals: a locality interval Sj from process pt has important coupling with locality

interval Sj from another process pj * pt (written as S, -> Sj.) if Sj Sj and pj is an

important partner of St. The directional relation of important coupling is usually

symmetric and transitive. In other words, if Si Sj, it is usually observable that Sj S,;

107

if there is another Sj St, then it is likely that Sk also holds. Chapter 4.4.3 presents

experimental results regarding such properties exhibited in real-life applications. These

properties of important coupling come from the following fact: processes in a distributed

application are usually designed to work together closely via massive interactions

between each other for a designated sub-task. In turn, transitive closure of important

coupling forms localized sub-regions of messages in space and time, which are called

locality regions. The nature of important coupling implies that locality regions are quasi-

atomic interaction regions, meaning there could be message interactions between such

regions. However, since quasi-atomic locality regions are formed via important coupling,

majority of messages associated with such a region is inside the region and there is only a

small portion of external messages (i.e. those between locality regions). Such quasi-

atomicity is an approximation of the 'ideal' atomicity, and its degree of closeness to

atomicity reflects how messages are localized within such a region: the smaller

percentage of external messages it has, the better interaction locality it exhibits.

4.3.3 Identification of Locality Regions

Given a distributed execution, its locality regions can be identified intuitively via a three-

step procedure: i) detecting appropriate locality intervals within individual process

lifelines; ii) identifying important partners of each locality interval; iii) composing

locality intervals inter-connected via important coupling to form locality regions.

However, in order to properly extract the hierarchical structure of locality regions that

correspond to the by-design sub-tasks at different levels of decomposition, there are still

quite a few detailed and yet subtle issues to be addressed: i) certain locality intervals

contain very few recurrences and are hence not "good" enough to be usable; ii) there are

cases in which important partners of a locality intervals are not easily distinguishable; iii)

important coupling relations might be established between locality intervals that are

108

actually not in the same sub-task. This subsection discusses practical solutions for

resolving these issues.

The notion of locality interval is generic as it captures a wide range of recurrence

patterns. In particular, it is able to model the 'non-ideal' but also much popular case

where non-recurring partners accidentally appear among other recurring ones. Obviously

such a case is better considered as one locality entity, rather than several separated ones if

modeled by the 'ideal' notion of BLI. On the other hand, there could also be non-ideal

locality intervals with very few recurrences, which are certainly not locality patterns and

should be filtered out. This leads to the qualification of locality intervals. Intuitively, any

interval with better locality should have a large percentage of recurrence events, say at

least 50%. The recurrence percentage hence can be considered as its 'quality', and is

better as large as possible. A process lifeline preserving good locality should observe

locality intervals with good (average) 'quality'. In addition, within the same process

lifeline, high-rank locality intervals are supposed to have better 'quality' than low-rank

ones. A locality interval with a 'quality' exceeding a given threshold is called a qualified

locality interval (QLI). The threshold value might vary depending on the use of QLI's,

and could be decided based on the quality distribution of a process's locality intervals.

Assuming a reasonable quality threshold is applied, each QLI should observe that the

majority or even all of its interactions are recurrences of important partners. Each of these

partners has a large number of occurrences, distinguishing itself from other occasional

partners that have only a few occurrences. In other words, the occurrence of all partners

within a QLI is likely to have a bimodal distribution, i.e., a mixture of two distributions

with probabilities a and 1 - a (0 < a < 1), regarding important and occasional partners,

respectively. Identification of important partners hence can be based on detection of such

bimodality. Note that in certain cases, the mixture coefficient a might be too large to

109

produce a bimodal distribution, e.g., all partners have almost equal occurrences and hence

are all important partners. In general, the notion of average stack distance measures the

number of localized objects for a given reference string. Consequently, for a given

locality interval, the number of identified important partners is expected to be close to its

average stack distance.

L
• •

P i -p * f > Legends: xixr, Message event

P2 • • > — A p p l i c a t i o n message

U Lz + i Locality interval

Figure 4.5 An example of mismatch between locality intervals

Important coupling relations can be established between inter-coupled QLI's after

identification of their important partners. Subsequently, locality regions can be formed

via the transitive closure of important coupling. Meanwhile, symmetry and transitivity of

important coupling can also be checked, and such properties are expected to hold in most

cases. However, since detection of locality intervals and identification of important

partners are all local decisions, it is possible that an important coupling relation is

established between two locality intervals that have 'mismatch' in terms of message

correspondence. Figure 4.5 shows such an example where a QLI L\ of process p\ is

coupled with two QLI's L2 and L3 of its important partner p2. Obviously in such a case,

the coupling relation L\ LT, should be omitted as there is only one message between

them and most messages betweenp\ andp2 corresponds to L\ -> L2. In general, there are

two reasons that might cause such a mismatch situation: i) the QLI's are from different

levels of task granularity and hence the messages between them correspond to different

percentages of occurrences within each other; ii) the QLI's are from same or similar

levels of task granularity but are coupled with infrequent messages. The former case

requires choosing locality intervals at proper levels, while the latter case requires filtering

110

inappropriate coupling relations.

The 'level' of locality intervals can be determined by the number of important

partners. In general, sub-tasks at different levels have hierarchical space-time coverage,

and their corresponding locality regions involve different sets of participating processes.

As a result, hierarchical locality intervals of a same process differ in their numbers of

important partners. Such a number hence can be taken as a parameter, and varying its

value will help selecting locality intervals at different levels. Note that it is different from

the ranking of locality interval discussed in Chapter 4.3.1, as the former is more

meaningful and needs to be decided statistically. Among all values of this parameter, the

one corresponding to the top-level locality intervals is important, as it decides the actual

lower bound for all locality intervals of a process. In practice, this value can be

approximated by the average stack distance of the given process lifeline.

Important coupling relations between QLI's can be filtered based on their relative

coupling strength. Intuitively, a 'strong' enough important coupling relation is expected to

involve the majority of all message interactions that are contributed by an important

partner. Given QLI's from Sj from pj, and their important coupling relation Si -> Sj,.

define its coupling strength as pij/pj, where is the number of messages involved in Si ->

Sj, and pj is the number of p/s occurrences in S,. Similar to the qualification of locality

intervals, there should be a strength threshold for qualifying important coupling relations.

More specifically, if the coupling strength of Si -> Sj exceeds a given threshold, say 50%,

it is called a primary important coupling (PIC) of St. This notion captures the essence of

interaction locality and is critical for forming locality regions. However, some QLI's,

especially those at lower levels, might not have primary important coupling at all. This

could be caused by two reasons: i) the probability of 'mismatch' between locality

intervals usually increases at low levels; ii) the deviation of coupling strength could be

111

enlarged due to small sampling of occurrences in low-level QLI's. To avoid the above

ambiguity issues, it is better to start calculating and determining the primary important

coupling of QLI's at higher levels. Information about primary important coupling at

higher levels will be used to guide the determination process at lower levels. Such a top-

down strategy will eliminate the fine-grained errors caused by low-level randomness. As

mentioned above, for a given process lifeline, the topmost level to start with can be

measured by its average stack distance.

In summary, locality regions of a distributed execution can be identified recursively

in a top-down manner. To start up, the topmost level locality intervals can be addressed

using the average stack distance of each process lifeline. Qualified locality intervals

(QLI's) can identify their important partners by detecting the bimodal distribution of

partner occurrences. Subsequently, the primary important coupling of QLI's can be

determined. Locality regions can be formed by QLI's inter-connected via primary

important coupling. Each resulted region then will be treated as a distributed execution

and be applied with the above procedure to identify low-level locality regions.

4.4 Interaction Locality in Distributed Applications

As discussed previously, interaction locality is actually the locality of dependencies

resolved by message interactions, and is likely to be exhibited in many distributed

applications. Related locality entities, including locality intervals and locality regions,

can be identified either locally or via frequent message coupling. These analysis, notions

and strategies are better justified with real-life applications. Important issues to be

checked include the general availability of interaction locality, the effectiveness of their

identification approach, and the statistical characteristics of identified locality entities.

This chapter presents experimental studies on various distributed applications, for

112

evaluating and verifying the above-mentioned notions as well as strategies. In particular,

justifications are prepared on four aspects of interaction locality, i.e., the traditional

locality views of individual process lifelines (in terms of stack distance), identification of

locality intervals as well as their important partners, formation of locality regions formed

via primary important coupling of QLI's, and characteristics of their coverage at different

hierarchical levels. Test cases are designed accordingly and experiments are conducted on

two example distributed applications. Analysis on experimental results confirms the

feasibility of identification approach as well as the existence of interaction locality.

4.4.1 Hypotheses and Test Cases

Analysis on the origination of interaction locality implies that interaction locality is the

intrinsic property of distributed applications. Consequently, it leads to a major hypothesis

about the hierarchical region-transition behaviors of distributed applications, which can

be further interpreted from the following perspectives.

Hypothesis 4.1 (Global view):

A distributed execution has majority of its messages contained within a set of top-level

interaction regions that are disjoint and distinct from each other in space and time. Each

region itself also has a similar internal structure involving a set of sub-regions at a lower

level, and such a hierarchical structure could be observed at several levels.

Hypothesis 4.2 (Region-wise view):

Such an interaction region consists of one interaction string from each involved process.

Easy pair of interaction strings is inter-coupled directly or indirectly via frequent

messages. The interaction region covers a major portion of all its associated messages.

Hypothesis 4.3 (Individual process view):

Each process lifeline has majority of its message events contained within a set of top-

113

level distinct interaction strings. Each interaction string itself also has a similar internal

structure involving a set of interaction strings at a lower level, and such hierarchical

structure could be observed at several levels.

Corollary 4.4 (Traditional locality view):

Each process lifeline exhibits traditional reference locality in terms of message

interactions.

Following the notions and strategies discussed in Chapter 4.3, a step-by-step process can

be used to justify each of the above hypotheses. In particular, good traditional reference

locality can be measured by a small stack distance for a given process lifeline. The

hierarchical distinct interaction strings within a process lifeline can be identified as

qualified locality intervals (QLI's). Locality regions formed via primary important

coupling of QLI's are good candidates for the disjoint and distinct interaction regions of a

given distributed execution. Hierarchy of locality regions can be identified and

characterized recursively using the top-down approach discussed in Chapter 4.3.3. The

following test cases are designed as an implementation of this justification process,

whose success will also prove the effectiveness of the identification approach.

Test case 1 (Reference locality):

The objective of this test is to verify the existence of reference locality within individual

process lifelines of distributed applications. Given a process lifeline, the stack distance of

each time point is calculated. Statistics on these stack distance values should observe a

small average stack distance, and a large percentage of time points that have a small stack

distance value.

Test case 2 (Locality intervals):

This test is prepared to detect hierarchical locality intervals of individual process lifelines.

114

Given a process lifeline, its hierarchy of locality intervals is constructed in a top-down

manner. In other words, the topmost level QLI's are first detected and then are considered

as input interaction strings for detecting the next level QLI's. The average stack distance

of the given process lifeline is used as index value of the topmost level QLI's, i.e., the

lower bound on the number of their important partners.

At a certain level, locality intervals are detected one after another, by the following

steps: i) the detection process scans the given process lifeline from its beginning for the

first interaction string that involves many enough partners (with respect to the given

lower bound); ii) if this interaction string is a qualified locality interval, its important

partners will be identified and checked against the lower bound; iii) if the number of

important partners exceeds the lower bound, the detection process will move forward to

the next locality interval that possibly overlaps with the current one, i.e., the start of its

suffix; iv) otherwise, it will try to include more time points and check if there is a larger

qualified locality interval; v) the above steps will repeat till the end of process lifeline.

Statistics on the resulted locality intervals should have the following observations,

especially at the top levels: i) there is usually a small percentage of un-qualified locality

intervals; ii) majority of time points within the given process lifeline is covered by

locality intervals; iii) qualified locality intervals have a large percentage of time points

associated with important partners.

Test case 3 (Locality regions)

This test aims at composing qualified locality intervals via their primary important

coupling relations to form the top-level locality regions. The qualified locality intervals

detected in test case 2 are directly used and the primary important coupling relations are

identified. Results should show that a large percentage of messages are captured by

primary important coupling, and quite a few of such relations are symmetric or transitive.

115

Regarding locality regions formed following these relations, there should be a large ratio

of internal messages for each region, and a majority of all messages covered by regions.

Test case 4 (Hierarchical locality regions)

This test studies the hierarchical structures of locality regions identified at different levels

of granularity. A recursive identification approach is used from top-down, by which the

topmost level locality regions are identified first and then are used as input interaction

regions for the next round of identification. Results should show that locality regions at a

higher level have larger ratios of internal messages as well as larger coverage of all

messages.

4.4.2 Application Traces

Performing the previously-proposed test cases requires trace data to be collected from

real-life distributed applications. Trace data here refers to the static information about a

complete distributed execution, including all process lifelines and all message

interactions. Since all locality entities and strategies are based on virtual time of message

events, collecting trace data is actually recording the messages events of a distributed

execution and tracking their partial order relations. This chapter evaluates two example

distributed applications and collects trace data from their executions in different scales.

These two applications belong to different application domains: one is an e-commerce

application and the other is an agent-based manufacturing process. Both applications are

based on agent role model [KenOO] and have implementations on a popular agent

development platform JADE [BPR99], As an intrinsic property of distributed applications,

interaction locality is expected to be application domain independent and should be

observable in both applications. The characteristics of these two applications are

described briefly below.

116

c u s t o m e d buyer3 market2 seller4

Figure 4.6 Work flow of agent-based e-commerce application

The e-commerce application is designed for buying and selling products

electronically with the help of software agents. There are four different types of agents:

customer, buyer, market and seller. Figure 4.6 shows the typical interactions between

these agents via an example work flow. In general, a buying task is initiated by a

customer agent when it sends a request to a buyer for buying a specific item. To fulfill the

request, the buyer communicates with one or more market agents and requests for a list of

potential sellers of the specific item. Each market maintains updated seller information

about different items and also replies query requests from buyers. Upon receipt of the

seller list, the buyer negotiates with one or more sellers on the list to complete the buying

task and then return the result to the customer. A buyer may also initiate an English or

Dutch auction with a group of sellers. In this application, the number of agents for each

type is variable and can be fed as parameters during the initiation of the application. The

interaction between agents could be carried out via individual messages or using

fundamental FIPA interaction protocols [FIP03]. In addition, a seller agent can participate

in multiple protocol sessions concurrently.

The other application is an automation of the entire manufacturing process of a

production house. The house business starts with acceptance of product orders from

customers. The order is then furnished in the manufacturing plant and then products are

117

delivered to the customer. Operational entities in the product line are modeled as software

agents who perform one or more specific tasks. Two major processes of the system are

order processing and manufacturing. A typical order processing scenario involves the

following types of agents: customer, sales and sales manager. Initially, a customer agent

makes an order for a list of products to one of the sales agents. The sales agent forwards it

to the sales manger for approval and replies to the customer accordingly after getting a

reply. A manufacturing process usually involves maker agent, bin agent, packer agent and

product line supervisor agent. A maker agent takes raw material as input to make

products and puts the furnished products into a dedicated bin agent. The packer agent

picks products from the bin, packs them and updates the finished product stock. The line

supervisor agent monitors the empty status of the bin and schedules it between makers

and packers. In this application, the number of assembly lines varies depending on the

market demand. The association of a maker, packer or bin to a specific assembly line is

dynamic. The number of agents is also variable and can be fed as an input parameter

during the application initiation. Figure 4.7 shows the work flow of these two processes.

118

The above work flows show clear sign of interaction locality in these two

applications. A top-level locality is usually organized around a major task, e.g., a buying

task in the former, and an order processing or manufacturing process of a product in the

latter. Agents form groups and group members cooperate with each other to accomplish

their specific tasks. Such cooperation incurs intensive message interactions that are

almost exclusively localized between group members. In addition, within a major task

there could be sub-tasks carried on in parallel, e.g., different product lines of a

manufacturing process for a same product, forming localities in a lower level. Such

knowledge can be used to verify the identification of locality regions for the

corresponding application.

4.4.3 Experimental Results and Analysis

Based on the design of test cases in Chapter 4.4.1, experiments have been conducted

accordingly on the two example distributed applications. Trace data has been collected on

their executions in different scales, which are obtained by varying their parameters for

controlling the numbers of agents. Table 4.1 shows the details on the number of agent as

well as messages involved in the two applications. Unless stated otherwise, experimental

results in the following sub-chapters are based on the medium-scale executions.

Application e-commerce manufacturing process
Scale small Medium large small medium large

No. of all agents 17 22 30 13 23 61
No. of all messages 636 2231 1287 533 1887 3248

Table 4.1 Information about two example applications in different scales

4.4.3.1 Test Case 1: Exhibition of Traditional Locality

This test gives a traditional locality view on individual process lifelines within distributed

applications. Stack distance is used as a measured of traditional locality and is calculated

over lifelines of all processes of each execution.

119

a) An example process lifeline: buyerl from e-commerce application

(a) Stack Distance over Process Lifetime

i J ' i • i
f

•-• • {

1 llll 1 II m m . llll i i
l i l l M I i i mw a i " B B S S ™ HilHR'Off l l 1 M'FIIIIWIIHISIIII

61 81 101 121 141 161 181 201 221 241 261 281 301 321 341 361
Process Lifeline

(b) Distribution of Stack Distance Values

300

05
® 250

.gioo
£

Stack Distance Values

(c) Cumulative Distribution of Stack Distance

I I §
1 8° £ o

0.1 0 2 0.3 Normalized 0.6 0.7 0.8 0.9 1
Stack Distance

Figure 4.8 Stack distance distribution for buyerl of e-commerce application

A buyer agent is a typical process in the e-commerce application. Figure 4.8 (a) shows

the stack distance values along the lifeline of such an agent, buyerl, which interacts with

a total of 11 other agents. For most of the time, its stack distance remains as 1, meaning it

almost interacts with only one partner. Statistics on its stack distance values in Figure 4.8

(b) also leads to the same conclusion. In addition, Figure 4.8 (c) plots the cumulative

distribution of its stack distance, where the X-axis represents the normalized stack

distance values and Y-axis represents the percentage of occurrences of corresponding

values. It concludes that for most of the lifetime, buyerl keeps interacting with one of its

recent partners, which is consistent with its average stack distance value of 1.46.

b) Traditional locality of all agents in e-commerce application

Figure 4.9 (a) shows the values of average stack distance as well as the overall partner set

size for all agents in the e-commerce application. Most agents have good traditional

locality represented by a small average stack distance (around 2), even though they might

120

have quite different partner set sizes. On the other hand, the curves for their cumulative

distribution of stack distance show noticeable differences in Figure 4.9 (b). This figure

uses a simplified naming scheme for agents: bl for buyerl, c2 for customer2, ml for

marketl, s3 for seller3, etc. It is clear that many agents have their majority of interactions,

say 80%, localized with a small subset of all partners (represented by a small value of

normalized stack distance). A few other agents, however, distribute their interactions with

a wide range of partners. For example, cl , c2, and ml require nearly 40% of partners in

order to cover 80% of interactions. This might be due to different types of reasons. In the

e-commerce application, customer agents only talk to buyer agents using a very small

number of interactions. In such a case, even their interactions are quite localized with just

a few buyers, they do not have good curves for cumulative distribution. Market agents,

on the other hand, interact with almost every agent except customers. Consequently, the

curves for their cumulative distribution of stack distance do reflect the lack of traditional

locality in their process lifelines.

Figure 4.9 Stack distance distribution for all agents of e-commerce application

c) Traditional locality of all agents in manufacturing process application

Figure 4.10 shows that the manufacturing process application has similar traditional

locality properties as the e-commerce application does. Most agents have a very small

average stack distance as well as a very good curve of cumulative distribution. A few

others, including Is 1, sal and sa2, have a relatively large average stack distance and also

121

require a large percentage of partners to cover majority of their interactions. In this

application, these names stand for line supervisor 1, sales agent 1, and sales agent 2,

respectively. Due to the roles they are playing, such agents need to interact with many

agents and hence do not have very localized interactions.

Figure 4.10 Stack distance distribution for all agents of manufacturing process application

4.4.3.2 Test Case 2: Detection of Locality intervals

(a) A g e n t L i f e l i n e C o v e r a g e b y Q L I ' s w i t h D i f f e r e n t L o w e r B o u n d s o n I m p o r t a n t P a r t n e t S e t S i z e n | Toplewi n = l n=2 n=3 j

! l 1 S I ! I 1 ! m is f 1 I If » 1 I ! I f 1 i

SWT U T T I H I T F T I T T II " W T 1 T T 1 1

1 21 41 61 81 101 121 141 161 181 201 221 241 261 281 301 321 341 361
A g e n t l i fe l ine

(b) A g e n t L i f e l i n e C o v e r a a e b v Q L I ' s a t D i f f e r e n t L e v e l s o f H i e r a r c h y 1 T o p ^ L e v e l 1 L e w l 2 M

3

2

1

0

. •>..-,•. - -.-..:-• • - • - • v . : . . ' . • • , ' • . . • • • . • . • . • • • ; •: • - " - • • . , , \ :•: • • ' • ' . • . - ' • .1
'••> ''J4-.':': '" 'v.'., V - ; ? ^ - 'v: . ! I .•; r : ; v V : " i

• •• ' .:• •• . • i " • • • - . . • - • . . • -£. • • •. • <. -.:.-: .. >..-?.-. ••• •*„ .• ;,>:•. !. ; . : . ' „ • • • • . , v v- --»v - - • • . - ; • • - - . . : ' • -• - j

3

2

1

0

: • ' f
3

2

1

0

r i - m i i n n r n i n i n r m n ; r n m n

3

2

1

0 • i T i i m i i i o D ^ ^

• t !

1 21 41 61 81 101 121 141 161 181 201 221 241 261 281 301 321 341 361 j
Agen t l i fe l ine

Figure 4.11 Properties of QLI's detected in buyerl's lifeline of e-commerce application

It is clear that in both applications there are two types of agents in terms of their locality

122

of interactions: i) a large number of 'simple' agents that play one role only and have

simple lifelines with quite localized interactions; ii) a few 'popular' agents that play

multiple roles simultaneously and have discreet interactions with many other agents. As a

result, agents of the former type usually have a small average stack distance and their

lifelines often involve only one level of locality intervals. Agents of the latter type have a

large value of average stack distance, and their lifelines contain several levels of locality

intervals that form a hierarchy.

a) Locality intervals at different levels

Given an agent lifeline, its top-level locality intervals can be detected by varying the

lower bound of important partner set size n. Figure 4.11 (a) shows the coverage of

qualified locality intervals (QLI's) detected in a 'simple' buyerl agent lifeline of the e-

commerce application, by setting n = 1, 2, 3 and a criteria of 50% for qualification of

locality intervals. Given the fact that buyerl has an average stack distance of 1.46, n = 1

is the optimum choice towards forming top-level QLI's. The resulted locality intervals

correspond to its simple lifetime periods and they also form a perfect coverage of its

whole lifeline. Figure 4.11 (b) shows the coverage of QLI's detected in different levels of

hierarchy, i.e., by recursively applying the detection procedure to each level-« QLI in

order to obtain the level-H+1 QLI's. In this figure, all sub-levels of QLI's fall into the

same and they are no much difference from the top-level ones, which are already a

perfect picture of buyerl's simple activities. As a comparison, Figure 4.12(a) shows the

coverage of QLI's detected in a 'popular' marketl agent lifeline of the same application

(with an average stack distance of 4.26). The lower bound n varies from 1 to 8, and again

a choice of n = 4 based on its average stack distance makes the optimum coverage of

lifeline. On the other hand, Figure 4.12(b) shows two levels of QLI's that are at finer

granularities. Statistics on QLI's detected in the manufacturing process application show

123

similar conclusions about the distinction of 'simple' and 'popular' agents.
(a) Agent Lifeline Coverage by QLI's with Different Lower Bounds on Important Partnet Set Size n (top level QLI's shows at n = 0)

n= . i-
-

i * i r » I I I I I I I t
i n i 1 1 1 t I f i i i i i i
I N I 1 V 1 I I i » M I I i :

r r i n i I j 1 I r r n l l l l 1 I V / !
•

•mmmn a i r m a i l mow nm mil tirmif M l ' mmmnf am nm ma i mmmmii
r r i n » i i i i r r n 11 i 1 i i l l

31 61 91 121 151 101 211 241 271
Agent lifeline

301 331 361 391 421 451 461

(b) Agent Lifeline Coverage by QLI's at Different Levels of Hierarchy | Toplevel Le\el 1 Lewi 2 Le\el 3 Level 4 Level 5 |

r if r r fir T f r r ~ rr n

r i f ' r r fir r r r n i i -

r r !M ' lltll 3«' arir s i r 9>it F if rtr r f 1 a r~imi mm-rr 1

r r i I r r N 1 LJ 1 1 J 1 1 j
31 61 91 121 151 181 211 241 271

Agen t l i fel ine
301 331 361 3 9 1 4 2 1 4 5 1 4 8 1

Figure 4.12 Properties of QLI's detected in marketl's lifeline of e-commerce application

b) Top-level locality intervals

Both of the above agents, buyerl and marketl, have quite large coverage of their lifelines

by top-level locality intervals hence detected. Figure 4.13(a) shows a statistic of overall

QLI coverage for each agent lifeline of e-commerce application. It is not surprising that

many other agents also have majority of their lifelines covered by top-level locality

intervals. In addition, most events hence covered are associated with important partners

of corresponding locality intervals. Note that a 'popular' agent ml has the worst coverage

percentage (70%) compared to others (above 80%). Figure 4.13(b) plots a curve for every

agent, which shows the percentage of agent lifelines covered by the top-level QLI's that

exceed a given length. It can be observed that customer agents usually have a small

124

length limit for their locality intervals (5 or 6), while seller agents have a moderate length

limit (around 15), and buyer agent usually have very large locality intervals (with a length

of 40 or above). All these agents follow a similar pattern: their curves drop quickly as the

locality interval length reaches a certain boundary value, meaning majority of their

lifelines is covered by locality intervals that are at least as large as what its boundary

value specifies. Such values vary with different types of agents, e.g. 3 for customer

agents, 11 for buyer agents and 4 for seller agents. Some buyer agents have a long tail in

their curves, indicating the existence of a single large locality interval. In contrast, the

'popular' agent ml (which is the only market agent) has a different curve that changes

slowly as the locality interval length increases, indicating that the corresponding locality

intervals have a wide range of length distribution.

(a) Agent Lifeline Coverage by Top-Level QLfs
Q Percentage of QLICoverage
(3 Percentage of Important Occurrences

f 60
& 40

20

b2 63 M bS 66 el c2 c3 ml s i s10 s i t Sl2 sZ s3 b4 s6 s7 s8 s9

Agents

(b) Agent Lifeline Coverage by Top^evel QLI's with Certain Lengthes

Figure 4.13 Properties of top-level QLI's from agent lifelines of e-commerce application

Observation on locality intervals of the manufacturing process application leads to a

similar conclusion. As shown in Figure 4.14(a), most agents have large lifeline coverage

ratios by their top-level locality intervals, except a 'popular' line supervisor agent lsl

(which has less than 60%). Besides, there is no lifeline coverage for two sales agents, sal

and sa2. This is due to the fact that sales agent has a very short lifeline in which they

interact with a wide range of other agents, and as a result, no top-level locality interval is

detected. From Figure 4.14 (b), it is clear that agents in this application fall into three

125

categories: i) customer agents that have simple short lifeline with small locality intervals;

ii) bin, maker and packer agents that have a simple long lifeline with large locality

intervals; iii) finished product manager, line supervisor, and sales manager agent that

have a long complex lifeline with large locality intervals. The first two categories are

formed by 'simple' agents with much localized interactions, while the last category

consists of 'popular' agents that interact with many other agents.

F i g u r e 4 . 1 4 P r o p e r t i e s o f t o p - l e v e l Q L I ' s f r o m a g e n t l i f e l i n e s o f m a n u f a c t u r i n g p r o c e s s a p p l i c a t i o n

4.4.3.3 Test Case 3: Identification of Locality Regions

This test forms locality regions by composing QLI's via primary important coupling

relations. The top-level QLI's obtained previously are used, and as a first step, primary

important coupling is detected between them.

a) Primary important coupling between QLI's

Primary important coupling plays a critical role in connecting locality intervals from

different processes. Given a threshold of 50%, such relations are established between

each pair of QLI's. For each QLI and each agent lifeline, a large percentage of their

message events are expected to be associated with primary important coupling relations.

Figure 4.15(a) shows the percentage of such association as per agent lifeline for the e-

commerce application. Most 'simple' agents appear to have a majority of their lifelines

associated with primary important coupling, i.e., 70% - 80% for sellers and customers,

126

and 60% for buyers as shown in Figure 4.15(a). In comparison, the 'popular' agent

marketl only has a coverage percentage of 14%. Figure 4.15(b) shows the distribution of

the association percentage values as per locality interval, where the X-axis represents the

values and the Y-axis represents their distribution. From this figure, more than 70% of

QLI's have a full coverage by such coupling relations, while around 10% of QLI's have

no primary coupling association at all. As a matter of fact, the former type of QLI's is

mostly from 'simple' agents and the latter is from marketl. The manufacturing process

application has similar statistics, as shown in Figure 4.16. Besides, 'simple' customer

agents (i.e., cl - c8) in this application have small coverage (around 30%) that is

comparable to 'popular' agents such as line supervisor 1 (lsl) and the stock manager

agent (sma).

(a) Percentage as per Agent Lifeline

i 7 0

1 ® 60

i i "
£ 40

1 30

IB
a Si £> £t a a <3 SSS'S'G'S'S'S

(b) Percentage Distribution as per Locality Interval

nHuftuYin
20 30 40 50 60
Percen tage Va lue o f Pr imary Impo r t an t Coup l i ng

80 90 100

F i g u r e 4 . 1 5 E v e n t a s s o c i a t i o n w i t h p r i m a r y i m p o r t a n t c o u p l i n g f o r e - c o m m e r c e a p p l i c a t i o n

(a) Percentage as per Agent Lifeline

!5 0

2 s s y •8 « s 3
Agents

(b) Percentage Distribution as per Locality Interval

10 20 30 40 50 60 70 80 90 100
Percentage Value of Primary Important Coupl ing

Figure 4.16 Event association with primary important coupling for manufacturing process application

127

In overall, 70% of all QLI events from all agents of the e-commerce application are

associated with primary important coupling. For the locality regions formed following

such coupling, 36% and 49% of all internal messages are associated with symmetric and

transitive primary important coupling, respectively. In comparison, the manufacturing

process application has relatively higher ratios. Table 4.2 summarizes the corresponding

results for the two applications in different scales.

Application e-commerce manufacturing process
Scale small medium large small medium large

Ratio of QLI events associated
with primary important coupling

69% 70% 69% 93% 89% 87%

Ratio of internal messages
associated with symmetric
primary important coupling

28% 36% 32% 84% 77% 73%

Ratio of internal messages
associated with transitive
primary important coupling

43% 49% 47% 84% 79% 74%

Table 4.2 Statistics on primary important coupling in different scales

b) Properties of top-level locality regions

Application e-commerce manufacturing process
Scale small medium large small medium large

No. of locality regions 18 120 42 26 81 135
No. of all messages associated 406 1859 1107 482 1612 2891
Average No. of messages
associated per locality region

22 15 26 18 19 21

Overall ratio of internal messages 55% 72% 79% 86% 81% 80%
Table 4.3 Statistics on locality regions in different scales

Size and Internal Message Ratio Distribution of Locality Regions • Size o Internal message ratio

oo-o-coo——ocooo—

S, 60

»«<>«>«X» » e » « M « » « » « M » { o s o w o o o w x s o w x w : !

° ° .••• «o„ • • • OOO oo 80 -8 «
s>

60 «?
V
2
"ra

40 E

ll!hlJiJ!;|!!:ih;li!l::l!lill!lim!l!l:ll!l;:niNi. n o
Locality Regions Sorted by Size

F i g u r e 4 . 1 7 S i z e a n d i n t e r n a l m e s s a g e r a t i o o f l o c a l i t y r e g i o n s d e t e c t e d i n e - c o m m e r c e a p p l i c a t i o n

128

Quasi-atomic locality regions are formed as transitive closure of primary important

coupling relations. In a medium-scale execution of the e-commerce application, there are

120 locality regions detected, covering 72% of all 2231 messages as their internal

messages. In the manufacturing process application, 81 regions cover 81% of all 1887

messages. Table 4.3 gives the detailed statistics of such results. In most cases, especially

for large-scale executions, majority of messages are covered by top-level locality regions

identified via QLI's and their primary important coupling.

The resulted locality regions vary in different sizes (in terms of number of messages

associated) and also have different ratios of internal messages. As shown in Figure 4.17,

locality regions in the e-commerce application have a large range of distribution in both

aspects. Majority of these regions have a high internal message ratio (above 80%). On the

other hand, there are a large number of small regions (with a size less than 20), together

with a few large ones (with a size above 20). Each region corresponds to a buying task,

which by design could be either large or small, depending on the parameters specified. As

shown in Figure 4.18, the distributions for the manufacturing process application are

much simpler. Most regions are of the similar size (around 20) and have the perfect

internal message ratio of 100%. This is due to the fact that most of such manufacturing

tasks are in regular shape.

Size and Internal Message Ratio Distribution of Locality Regions • Size o Internal message ratio

Locality Regions Sorted by Size

F i g u r e 4 . 1 8 S i z e a n d i n t e r n a l m e s s a g e r a t i o o f l o c a l i t y r e g i o n s i n m a n u f a c t u r i n g p r o c e s s a p p l i c a t i o n

129

Figure 4.19 Distribution of internal messages over locality regions in different sizes for e-
commerce application

The choice on threshold of primary important coupling has certain effect on the size

distribution of locality regions hence formed. Figure 4.19(a) shows for the e-commerce

application the overall distribution of internal messages over locality regions in different

sizes, when varying the threshold t for primary important coupling. The X-axis represents

the percentage of a region's size over the maximum region size that could be detected

given a particular value of t. The Y-axis represents the total number of internal messages

that all regions at a certain size could cover. Parameter t are tested with five values, 0.1,

0.3, 0.5, 0.7 and 0.9, and the same set of results is obtained for t = 0.3 and / = 0.5 (with a

maximum locality region size of 110), as well as for t = 0.7 and t = 0.9 (with a maximum

region size of 49). Clearly a small value of t leads to forming regions of smaller sizes.

Enlarging the threshold t for primary important coupling encourages forming large

130

regions, but does not change the overall picture of distribution as well as the above

conclusion. This is also implied by the corresponding cumulative distribution curves

plotted in Figure 4.19(b), where the Y-axis represents the percentage of total internal

messages covered by all regions no larger than a certain size. Figure 4.20 shows similar

but on the other hand quite simpler results for the manufacturing process application.

Again, this results from the simplicity of parameterizing at the design stage.

(a) Distribution of Internal Messages over Locality Regions in Different Sizes B t « 0 . 1 01=0 .3 P t = 0.5 iT-t= 0.7

700

» 6 0 0
ID •> CO
u) 500 -0 1
5400 •
i)
- 300 o
1 2 0 0 -
3

" 1 0 0 •

0

i t p

1

5
j
1 • • i i i , i M" f i">r i^iVi'i 1 in' i ̂ 4-OH-

t
1 "1 1 1 1 Pp- lnl 1 II 1 »< f l'l"l M 1 1 5 i 1 t-H-i

21 31 41 51
Size Percentage of a Locality Region over Maximum Region Size

(b) Cumulative Distribution of Internal Messages over Locality Regions in Different Sizes - t = 0.1 1 = 0.3 t= 0.5 •

21 31 41 51
Size Percentage of a Locality Region over Maximum Region Size

Figure 4.20 Distribution of internal messages over locality regions in different sizes for
manufacturing process application

4.4.3.4 Test Case 4: Properties of hierarchical locality regions

Locality regions at different levels of hierarchy can be formed as transitive closure of

QLI's at the corresponding level. As shown in Figure 4.11(b) and Figure 4.12(b), there

are only two levels of hierarchy for QLI's in the e-commerce application. Therefore, it is

not surprising that the locality regions hence formed also show only two levels of details.

131

Distribution of Internal Message Ratio for Locality Regions at Different Levels « Top level a Levell Level 2

rvwrn ..."..• ^^^HMttft
/ • fTTTTKrrtvyr.y.T m. •..,:••• • • ' H.i'M.ffg.'fTyrrtirTiCTfMJr.WBTff ' ' 1 •• • H.

Ffin :

•Via •

Locality Regions Sorted by Internal Message Ratio

Figure 4.21 Distribution of internal message ratio for locality regions at different levels from e-
commerce application

In particular, the top-level regions cover 72% of all messages, and the next-level regions

cover 50% of messages found at the top-level, or 36% of all messages within the whole

execution. Figure 4.21 shows the distribution of internal message ratios per locality

region, where the regions are sorted by their values of internal message ratio in a

descending manner along the X-axis. Clearly, locality regions at the top-level have larger

internal message ratio than those at level-1. Note that the set of results for level-2 is

almost the same as that of level-1, meaning in fact there is no more hierarchical structure

onwards. This is also confirmed by the statistics in Table 4.4, with respect to executions

in different scales. From the perspective of application design, such a two-tier structure is

resulted from the existence of high-level buying tasks and the use of various FIPA

protocols as building blocks for those tasks.

Application e-commerce manufacturing process
Scale small medium large small medium large

top-
level

No. of locality regions 18 120 42 26 81 135 top-
level No. of all messages associated 406 1859 1107 482 1612 2891
top-
level

Overall ratio of internal messages 55% 72% 79% 86% 81% 80%
level-2 No. of locality regions 17 111 36 22 78 141 level-2

No. of all messages associated 252 1479 864 430 1493 2670
level-2

Overall ratio of internal messages 38% 36% 43% 81% 74% 71%
level-3 No. of locality regions 16 109 35 22 75 135 level-3

No. of all messages associated 244 1461 838 430 1469 2559
level-3

Overall ratio of internal messages 38% 36% 43% 81% 74% 71%
Table 4.4 Statistics on hierarchical locality regions

Results in Figure 4.22 leads to a different conclusion for the manufacturing progress

application. For most instances, the set of results for top-level locality regions coincides

132

with those for level-1 and level-2. In other words, there is actually no hierarchical locality

structure for this application. This is resulted from the fact that all negotiating and

manufacturing tasks in this application are implemented by a few simple messages

instead of complicated communication protocols.

Distribution of Internal Message Ratio for Local i ty Regions a t Different Levels • T ° P l e v e l B Level 1 Level2

• •

Locality Regions Sorted by Internal Message Ratio

Figure 4.22 Distribution of internal message ratio for locality regions at different levels from
manufacturing process application

The above two example applications are of small scale in real life, in terms of both

numbers of processes as well as messages involved, and design complexity with respect

to use of various patterns, protocols, and implementations. Regular large-scale distributed

applications have choices to employ techniques at different levels, including automatic

task scheduling, specific problem-resolving patterns, synchronization protocols, and

standard communication primitives. As a result, there will be a rich multi-level structure

at the design stage, and corresponding hierarchical locality regions observable at run time.

4.5 Remarks

This chapter studies the locality phenomenon of message interactions in distributed

systems and makes its contributions mainly in three aspects. Firstly, analysis from the

perspective of distributed program design reveals that interaction locality originates from

resolving dependency localization via message passing, and is exhibited as a hierarchical

'region-transition' pattern in many distributed applications. Secondly, a bottom-up

133

approach is proposed to identify those by-design regions in a given distributed execution.

In particular, a generic notion of 'locality interval' is developed to capture popular

recurrence patterns within individual process lifelines, and frequent message interactions

between such intervals are modeled as 'important coupling', by which they form a

'locality region' of localized messages. Concepts of qualified locality interval (QLI) and

primary important coupling are also introduced to resolve certain practical issues. Finally,

experiments are conducted on traces from real-life distributed applications, and

justifications are made on four perspectives of interaction locality, namely traditional

locality view, individual process view, region-wise view, and global view. Corresponding

results and analysis justify the feasibility of the proposed approach as well as existence of

the modeled locality.

In the literature, there are two notions of locality that are understood about a

reference string, namely long-term popularity and short-term correlation. The former

captures the recurrence property of references to the same object, measured at a particular

time instance. It is often related to a particular context such as caching problem with an

LRU stack, which has a 'long-term' measure for a whole reference string such as hit ratio

[Den68] and stack distance [MGS+70]. The latter captures the recurrence property of

references to a subset of objects, measured over a time period. It is more related to the

fine-grained structuring of a reference string, which can be modeled as 'short-term'

reference sequences with possibly hierarchical properties, e.g. bounded locality interval

(BLI) [MB76]. These two notions refer to different aspects of traditional locality and

corresponding properties co-exist within a reference string. This chapter shows that such

properties are also observed during the study of interaction locality. For example,

individual process lifelines of a distributed execution are interaction strings that exhibit

traditional reference locality. This is reflected by their small 'long-term' average

134

recurrence distances and the existence of 'short-term' locality intervals. In fact, the notion

of locality intervals captures all BLI's and also other popular recurrence patterns. Also,

interaction locality appears in a form of 'region-transition' pattern, which is quite similar

to the 'phase-transition' behavior [DK75] characterized in reference locality. In particular,

both higher-level regions and higher-level phases are more distinctive from each other,

and they both have more coverage of message or memory references compared with

lower-level ones. However, interaction locality is much more complicated than traditional

reference locality. In a distributed application, message references span in both space and

time and form locality regions. As a result, there are two extra perspectives of interaction

locality, in addition to traditional views from the above two notions. The region-wise

view reveals the existence of important coupling relations between individual locality

intervals of a same region, while the global view shows that there are hierarchical

structures between locality regions at different levels of granularity. More importantly,

such perspectives give rise to the bottom-up approach proposed in this chapter, making it

possible to identify the actual locality regions for a given distributed execution. On the

other hand, study on traditional reference locality is usually driven by a specific

optimization problem, while this chapter only intends to show the by-design locality

regions that are naturally observable. Detecting locality regions towards optimizing the

overall performance of distributed checkpoint and recovery is further discussed in the

next chapter.

135

Chapter 5

Locality-Driven Checkpoint and Recovery

Locality is traditionally an important factor related to performance, e.g. in memory and

web caching systems. As an empirical result demonstrated in Chapter 4, distributed

applications exhibit a new type of locality with various similar properties. Consequently,

localization of such (computation or synchronization) efforts can be used as an effective

strategy to facilitate performance-oriented strategies in the corresponding systems, in

particular, large-scale distributed systems that involve a large number of messages and

processes. An important application is distributed checkpoint and recovery.

In distributed systems, messages as well as process advancement create dependencies

that often spread far and wide among each other. Removal of such dependencies requires

proper handling of corresponding messages or processes, which necessarily incurs

considerable overhead (refer to Chapter 3.2). As a result, distributed strategies usually

could not achieve both good scalability and good performance at the same time. Instead,

they might only perform well when deployed around a small scope of entities. In

particular, distributed checkpoint and recovery strategies usually suffer from either global

recovery effect due to checkpoint coordination [TS84, CL85] or degraded runtime

performance caused by message logging [AM98, SY85]. However, existence of

interaction locality provides a possibility to have advantages from both aspects. As an

example, a hybrid group checkpoint strategy (discussed in Chapter 3.3) can have

136

minimized logging overhead with limited recovery spread, by forcing subsets of

processes with localized message interactions to take coordinated group checkpoints and

only logging the inter-group messages afterwards. This is due to the fact that interaction

locality implies naturally-formed small scopes of entities with greatly reduced

dependencies in between. Based on the same principle, locality of interactions can also be

used to help resolving quite a few other problems in large-scale distributed systems. In

general, solution strategies of such problems are applied to small locality entities of

message interactions that satisfy certain localization criteria, which are often driven by

both aspects of optimization requirements, i.e., scalability and performance. For

distributed checkpoint and recovery, this refers to an optimized cost involving both

recovery effect and runtime overhead.

An optimal solution for distributed checkpoint and recovery is a result of

decomposing a distributed execution into a proper set of quasi-atomic locality regions.

On-the-fly identification of the corresponding regions in turn requires knowledge about

concurrent and future progress of all relevant processes. Obviously complete knowledge

of concurrent as well as future interactions is a physical impossibility. However, existence

of locality properties makes it quite possible to dynamically detect and predict the

formation of certain locality regions at run time, and hence to produce a reasonably good

enough solution for practical use. In particular, a process can detect the formation and

also to predict the future growth of a locality interval by locally monitoring its recent

message interactions. Moreover, it only needs to know the concurrent progress of its

important partners (instead of watching over every other process), which is much easier

to obtain via their tight coupling of frequent message interactions. Besides, there are also

certain levels of detailed knowledge that can be made available at design time, providing

further flexibility as well as choices for runtime strategies to identify locality regions

137

more accurately.

This chapter continues with the above idea and develops results on optimizing

distributed checkpoint and recovery by locality-driven strategies. The rest of this chapter

is organized as follows. Chapter 5.1 proposes an abstract performance measure for

checkpoint and recovery protocols, and demonstrates its relationship to interaction

locality as well as the optimal result of decomposition. Chapter 5.2 introduces various

strategies of managing knowledge in order to assist runtime identification of locality

regions. Chapter 5.3 discusses design choices available for fine-tuning the performance

of group checkpoint protocols. Chapter 5.4 reviews the contribution of this chapter.

5.1 Performance of Checkpoint and Recovery

The term "performance" could be used to refer to various aspects of checkpoint and

recovery. The two existing categories of strategies have different performance advantages,

and are subject to corresponding performance-related factors. For example, log-based

strategies are sensitive to the commit latency regarding stable storage. In checkpoint-

based strategies, the important performance factors are checkpoint creation overhead,

protocol coordination overhead, storage consumption, etc. Due to the presence of failures,

one might also need to consider the costs occurred at recovery time, such as recovery

protocol overhead, computation waste, and the number of processes being rolled back.

In the literature, performance of checkpoint and recovery has been measured

differently. A simple way to understand the performance of a protocol is to check the

extra time it adds on a failure-free execution. Contrasts can be made on the actual time of

specific costs that a protocol incurs, including checkpoint overhead, logging overhead,

and rollback delay [BLL89, NF96, NF98, RAV99, MM05, ZHK06], Similarly, such raw

experimental data can also be obtained for special factors such as CPU overhead,

138

communication cost [BLL89], disk consumption and storage latency [Pla96]. A more

meaningful way is to compare the extra add-on time with the failure-free execution itself.

Notions of "percentage overhead" [Vai94] and "fractural time overhead" [RUI97] have

been introduced to represent the percentage increase of overall completion time of a

given execution. A small percentage implies little cost and hence good performance.

Results based on such measures have been reported with respect to specific costs [EJZ92,

EZ94, SS97, Sen97, RAV99], Based on the same principle, a comprehensive measure

called 'overall gain' [PGB01] has also been proposed as the average per process fraction

of total completion time of a given execution with versus without the application of a

particular checkpoint and recovery protocol. In other words, the comparison is made

between the execution that involves all runtime checkpoint as well as recovery costs, and

the execution that only have failures and subsequent recovery costs. In addition, the

calculation is from the perspective of individual processes in average instead of

considering all processes together. Obviously, an overall gain less than 1.0 implies the

significance of applying a checkpoint and recovery strategy, and the lower value it has,

the better is the corresponding performance.

Existing performance measures are not good candidates for evaluating locality-

driven checkpoint and recovery strategies. The raw data of extra time values is

straightforward and detailed, and is only useable for understanding specific protocols or

performance factors. The percentage-based measures are intuitive but have the same

problem of only dealing with specific factors. The notion of 'overall gain' considers the

costs of both checkpoint and recovery, and can present an overview about how a protocol

could perform in general. However, it measures performance in a per-processes manner,

and records nothing about inter-process message interactions. It therefore provides no

benefit for understanding the locality pattern of a given execution, or its relation to the

139

performance of group checkpoint protocols. A new measure is hence necessary, and

should involve the factors that are important and relevant to interaction locality.

5.1.1 An Abstract Performance Measure

Exhibition of interaction locality makes it possible for checkpoint and recovery strategies

to have good performance at run time and recovery time as well. Locality patterns of

distributed executions could be very different, which will lead to different performance.

Intuitively, good interaction locality should give rise to good performance in both aspects,

if proper checkpoint and recovery strategies could be applied. Given a distributed

execution, the optimal performance is only subject to its locality pattern, and is

independent of the availability of checkpoint and recovery protocols. This is similar to

the effect of traditional reference locality in improving the overall caching performance.

A measure of the optimal performance hence should be generic, comprehensive and

locality-sensitive. This chapter proposes the checkpoint-recovery cost-efficiency as such

a measure, which is defined as the overall checkpoint-recovery cost normalized by the

original failure-free execution time of a given distributed execution.

From the Quasi-Atomic Recovery theory, a distributed execution can be treated as a

set of well-ordered quasi-atomic recovery blocks (refer to Theorem 3.3 in Chapter 3.1.3).

At run time, checkpoint protocols perform proper handling of message- and program-

order dependencies, causing a decomposition of the given execution into a set of disjoint

quasi-atomic interaction regions. For ease of discussion, they are termed recovery regions,

as each of such regions could confine failures inside and hence corresponds to a quasi-

atomic recovery block. For example, such regions are formed between two consecutive

global checkpoints, and between two consecutive individual checkpoints in log-based

recovery as well. Note that by definition there is no recovery spread between recovery

regions, assuming all dependency relations have been properly taken care of. Creation of

140

checkpoints and message logs will superpose extra costs over the failure-free execution at

run time, namely checkpoint and logging overhead. Also, possible failure and consequent

recovery will lead to loss or waste of work, which forms another extra cost (term it as

recovery waste). These three types of costs are the common as well as major

considerations of most checkpoint and recovery strategies, and meanwhile can be

measured separately in a region-wise manner. There could also be protocol-specific costs,

such as the latency caused by coordination and blocking, overhead of logging extra

messages (refer to the NGC protocol in Chapter 3.3.3), etc. These are subject to the

proper design of checkpoint and recovery protocols, and related issues will be discussed

in Chapter 5.3.

In a distributed system, an execution is usually modeled as a set of logical message

events, without considering the actual time elapsed in between. Equivalently, there is a

uniform distribution of message events and each behavioral fragment is associated with

the same execution time. Such an assumption is adequate due to the fact that most

distributed systems are message-intensive and transaction-oriented, and their progress is

hence subject to the logical time (or virtual time) measured by the number of message

events. The above-mentioned checkpoint and recovery costs as well as the failure-free

execution time can also be modeled quantitatively in the same way Given a. distributed

execution that consists of a set of disjoint recovery regions, its original failure-free

execution time is proportional to the number of its message events A, which is a

summation of the number of message events A, for each component region R,. The

checkpoint overhead c, for Rj is measured as c,- = kj x c\, where kt is the number of

processes in Rj, and ci is a constant measuring the overhead per checkpoint. Similarly, its

logging overhead is measured as /,• = m,- x c2/2, where /w,- is the number of external

messages for Rt, and c2 is a constant measuring the overhead per message. Here an

141

external message is counted for a 'half' time in each region, and two half's will make one

message when all regions are counted.

i i i i i i i I I i- - U I I
p-. : : > *rv—;—>
P- I J""" j j y \ "'! 4> Legends:
Pi ; — I — S.i ^ * Message event
P •>-. T P ^ — I 4 N, — A p p l i c a t i o n message
* 4 I l \ • • I / I \ T /

I I \ I t I I \ I 4 T . p ; - > | x ^ ^ Recovery region 5 i 1 i • i -i i i * - * + • i i • i i i • i i • i I I
t = 1 t = 2 t = t; t = Tj
pfl)-2 p(2)=\ p(V = 3 p(T^ = 3
eft) = 2 = 3 c(t[) ~ 11 c(Ti» = 16 = ̂ ,-

Figure 5.1 An example recovery region with logical clock labeling

Assuming equal probability of failure at every message event (denote it as a constant

co), the expected recovery cost of a given distributed execution can be calculated in a

region-wise manner. For each recovery region Rj, a positive number (e.g., logical clock

[Lam78]) can be assigned to each message event such that the ordering of these numbers

does not violate causality. Figure 5.1 shows an example of such numbering via logical

time (with a range from t = 1 to t — Ti). Within a recovery region Rh there are two

functions associated for each time point ti'. pit,) denotes the number of processes that have

an event at t„ and c(t,) denotes the total number of events from t = 1 to t = tj. Obviously

c(ti) = Zi" p{t). Suppose a failure occurs at a particular event on /„ c(ti) captures the

corresponding recovery waste and pit,) captures the total number of events that have the

same recovery waste. Hence the expected recovery waste of R, can be calculated as: rt =

co x Ei77 (c(t) x p(0), where Tj is the largest logical clock value of t, in Rj. Notice that c(T,)

— H\T' pit) = Ab therefore r, = co x Zo?' (c(0 x p(0) = co x A? 12. This result is better

understood via the following equations in calculus form.
i

For functions c{t) and p{t), 0 <t<Th and c(/) = ^pix)dx .
x=0

Sincep(0) = 0, c(0) = 0, thereforep(x)dx = d{cix)).

142

c (T.) c A
Hence, rt = c0 \c(t)p{t)dt = c0 \c(t)d{c(t)) = c0 x^r^ = •

1=0 1=0 1 1

Consequently the overall checkpoint and recovery cost C for the whole distributed

execution is: C = Z; (N + CI + /,) = Z; (CQA^/2 + c\k + cimJT). The performance of

checkpoint and recovery can be measured from the perspective of cost efficiency, i.e., the

overall cost normalized by the original failure-free execution time, as follows:

E = CIA — MA x I , (CQA?/2 + c\kt + c2m,/2)

The above formula is only subject to the decomposition result of a given execution.

Due to the existence of message interaction patterns, the measure E could vary largely

due to different ways of decomposition. In this formula, the three components play

different roles during such variations. Towards minimizing E, the first component CQA, 12

represents the need of forming as small as possible recovery regions, and the latter two

components c\k, + cimjl represent the balancing forces to grow recovery regions from

both space and time. Since A = XiA„ minimizing Z; co4,2/2 means that all regions better

have the same size and they should be as small as possible: the extreme will be that each

region only contains one message event. On the other hand, minimizing c\kt means to

avoid taking checkpoints and hence to keep as many as possible message events within

each behavioral fragment, while minimizing C2m,/2 means to avoid logging and hence to

involve as many as possible processes within each region. The latter two components

thus explain how log-based recovery and coordinated checkpointing could work,

respectively. Taking these two components together into consideration, the extreme on

this side is to have only one recovery region for the whole execution. Obviously the

optimal decomposition with minimized E should be a balanced result between these two

extremes, i.e., a set of regions at a certain size, which have a few external messages as

well as common processes. In other words, it implies a locality pattern at a certain level

in the given execution. This coincides with the intuition of group checkpointing as well

143

as its driving force of interaction locality. The formula hence reflects a convexity

property of how decompositions could vary, and also demonstrates the feasibility of the

locality-driven group checkpoint strategy.

The above cost-efficiency measure is abstract and generic. It starts from the

fundamental perspective of recovery regions, and is able to capture the three essential

costs that are common and critical to all types of strategies. Such costs are inevitable and

hence form the minimum price to be paid when applying checkpointing and recovery.

Protocol-specific costs are neglected and will be addressed separately in Chapter 5.3. On

the other hand, these three factors are locally decidable and are all related to patterns of

interaction locality. The measure hence provides a new view for studying the important

factors and their effects in optimizing the overall performance.

5.1.2 Towards Performance Optimization

Given a distributed execution, it is critical to find the optimal decomposition that

minimizes the cost-efficiency measure: E=MAx Zi (CQA,2/2 + C\kj + c2/w,/2). However,

even if full information is made available in terms of the whole execution trace,

decomposing a distributed execution still incur undesirable complexity and finding the

optimal solution hence becomes unrealistic. Alternatively, heuristic strategies might be

desirable and can be developed from various perspectives. For example, based on the

convexity property of E with respect to the size change of recovery regions, a heuristic

could make its first move from either ends, i.e., either starting from the whole execution

and trying to split it into smaller regions, or starting from each individual message event

and trying to merge them into larger regions. The latter is more practical and meaningful,

regarding the availability of knowledge within a distributed circumstance. In fact, the

bottom-up approach proposed in Chapter 4 already demonstrates its feasibility in a

similar way.

144

In general, to make the latter approach work, one needs to know where to begin with,

how to grow a region, and when to stop growing. A simple prefix-pruning scheme can be

suggested as following: starting from the initial cut of the given execution, a quasi-atomic

interaction region can be grown gradually via merging small regions, which could also be

single message events or individual behavioral fragments, through the paths of both

message and program-order dependencies until it becomes large enough; then it will be

chopped off in the form of a quasi-prefix and new regions will start over from the suffix

that is left behind. During this region-growing procedure, one expects to see a continuous

decrease of the overall cost for the subject region, until some point where the cost starts

increasing and then the region stops growing and is pruned.

For each region Rj, its contribution to the overall cost measure E is Q = coA,2/2A +

[c\k, + C2iriil2)lA. Let p, denote A J A, the percentage of R, within the execution, and o,

denote (c\k, + c2mjl2)IAj, the average per event runtime overhead for Rj, then C, = (c^AJ2

+ Oj)pi. Consequently E = Z/ (co^,/2 + o,) p t with Zi Pi = 1- {coAj/2 + o,) represents the

total cost of Ri and p, represents its relative weight among all regions. E is then the

weighted cost of all regions. This formula also means the cost of each region can be

calculated separately and can be used as an indicator during the above merging procedure.

The criteria for merging two (disjoint) regions R\ and R2 is that, the resulted region

R\+2 should have less cost contribution compared with the cost of two regions before

merging. In other words, p\(coA\/2 + oi) + p2(coA2/2 + o2) > (pi + PI)(CQA\I2 + c§A2!2 +

o 1+2). Suppose there are k\2 common processes and m\2 inter-region messages between R\

and R2, then o]+2 = [c\(k\ + k2 - k\2) + c2{m\ + m2 - 2mi2)/2]/(Ai + A2). Finally, the

merging criteria can be derived (after a few steps) into the following form:

c\k\2 + c2m\2 > COA\A2

The above inequality has several implications. First of all, merging is more likely

145

between small or asymmetric regions (in terms of size) within a large execution. This also

verifies the feasibility of the above region-growing approach, which starts from single

message events and individual behavioral fragments. Also, for two regions that have no

common process or inter-region message, merging will never be appreciated: they better

stay separately as their merge will never gain any decrease of the overall cost. Instead,

merging is much favored between regions that have more common processes and/or

inter-region messages. This means that the grown of a region is more preferably through

the paths of intensive program-order and/or message dependencies. In addition, since

usually c\ » c2, a region will rather choose to proceed ahead with its current members

than recruiting new ones, if it is having many enough message interactions with the

outside. Moreover, all parameters in this inequality are locally obtainable and hence

keeping or stopping the growth of a region is completely a local decision. In other words,

decisions for concurrent regions can be made independently and their results will not

affect the optimality of each other at all.

In general, for the merging of more than two regions, the criteria will become:

ciZ/Xl/*; ky + my > coLiLj* AjAj

In the region-growing procedure, a recovery region will stop merging when the

criteria no longer holds. In particular, given an under-growing region Rj, the condition by

which it stops growing will be: c\k + c2m < coAjA' for any region R\ where k and m

denotes the number of common processes and inter-regions messages respectively.

Consequently for any region R', A, > (c\k + c2m)/coA'. Note that in this inequality, At is

for an after-merge region which will never exist. In other words, A, will never become

larger than (c\k + c2m)/coA', as once it reaches that value it will then stop. Since k < A'

and m<A \ the function (c\k + c2m)/coA' has a maximum value when k = m = A' (denote

it as A*):

146

A% = (c i + C2)/CQ

In case of merging involving more than two regions, the resulted maximum region

size will be less than A*. It is easy to prove that in an optimal decomposition, no region

has a size larger than A*, since if otherwise, such a region can be decomposed into two

smaller regions and their cost contribution will decrease, which contradicts with the

optimality.

Existence of such a maximum size for recovery regions has certain implications. It

justifies the use of bounded region size in group checkpointing (refer to k-bounded

protocols in Chapter 3.3.5). Maintaining over-sized regions will harm recoverability and

hence the overall performance. On the other hand, it only serves as a theoretical upper

bound and might not be used to replace the merging criteria itself. Even in an optimal

decomposition, not every region has to have a size of A*. In fact, there could be no such

region at all.

A* is only based on the three constant cost factors, and is easy to calculate. Larger

factors of runtime overheads (i.e., c\ and c2) together with smaller factor of failure

probability (i.e., co) encourage merging and hence formation of larger recovery regions.

From the merging criteria, larger c\ and c2 with smaller Co also lead to clearer distinction

between resulted regions, which could be either or both of less external messages and less

common processes. Notice that these reflect the hierarchical properties of interaction

locality discussed in Chapter 4.2, i.e., higher-level locality regions have larger sizes as

well as fewer inter-region messages. Intuitively, this implies that the optimal

decomposition is very likely to coincide with the interaction locality at a certain level,

which is directly related to A*. As a result, the problem of finding the optimal

decomposition turns into detecting locality regions at the corresponding level, with the

assistance of the merging criteria and the region size upper bounds*.

147

5.1.3 Interaction Locality and Performance Optimality

For a given execution with fixed locality pattern, there is an obvious connection between

performance optimality and interaction locality. However, locality patterns could vary

largely in different distributed applications. It is also interesting to know how interaction

locality could affect the performance optimality. In other words, what kind of locality

pattern leads to the best (optimal) performance?

Following the discussion about the performance measure E = l/A x I , (coAf/2 + c\k

+ cirriill) in Chapter 5.1.1, optimizing E requires minimizing all three components for

each region, CQA?I2, c\ki and cimJ2. Since messages could be either within or between

regions, a simple situation would be having all messages contained inside regions, and

each rrij thus becomes zero. In addition, each k,• could be as small as 2, and c<>4,2/2 has

minimized value if each region has the same size. Assume there are totally n such regions,

i.e., n = A/Aj, it can be derived that in such a case E = c§AI2n + c\2n!A, which is a convex
1/2

function of variable n, and has a minimum value when n = (co/ci) All. This corresponds

to an ideal pattern of n equally-sized atomic regions, each involving two processes.

Obviously the ideal pattern does not exist in real-life distributed applications.

However, the above result indicates the effective properties of locality patterns that will

lead to better performance: 1) equally- or similarly- sized regions at a proper level; 2) a

minimum number of member processes for each region; and 3) a minimum number of

inter-region messages. In other words, a set of performance-oriented locality regions

should be regularized in size, mutually distinct in message inter-coupling, and each

involving only a small number of processes. In fact, such regions are typical in

distributed executions that exhibit good interaction locality.

In tradition, 'good' locality refers to the fact that a reference string shows a clear sign

of recurrence patterns, which can be modeled in different ways, e.g., with notions like

Working Set, etc. In general, the degree of 'goodness' can be qualitatively measured in

148

terms of average stack distance. Such a measure, on the other hand, captures nothing

about the existence of fine-grained structures such as Bounded Locality Intervals.

Similarly, a distributed execution is said to exhibit good interaction locality if region-

transition patterns can be observed clearly and significantly. However, due to the

hierarchical nature of interaction locality, there is no unique measure of how good

locality a distributed execution could exhibit. Instead, good interaction locality is

reflected separately from perspectives of both individual processes and locality regions.

In general, locality is a phenomenon of continuous recurrences around the same subset of

objects. Given a behavioral fragment of a process, good locality simply means: i) a small

(important) partner set compared with a large fragment size, and ii) a large ratio of

important partner messages. Notice that such locality properties are just limited and

partial projections of those for its corresponding locality region. For each locality region,

good interaction locality intuitively implies: i) a small membership set compared with a

large region size; ii) a small ratio of external messages. Both properties actually lead to

good performance due to the above performance-oriented requirements 2) and 3).

In a distributed execution, having equally- or similarly- sized locality regions does

not seem to be a 'pure' locality property. However, it is not counter-intuitive either. At the

design stage of distributed applications, proper task decomposition intends to make sub-

tasks at a same level have similar scales, which in turn form corresponding locality

regions with similar sizes. This is also demonstrated by the experimental results on the

two example applications in Chapter 4 (refer to Figure 4.17 and Figure 4.18 in Chapter

4.4.3.3).

The above discussion concludes that good interaction locality lead to good

performance. Notice that such a pattern is already a decomposition result for the

corresponding distributed execution, and is in fact a good candidate for the optimal if

149

compared with other possible results. For each region Rj of the optimal decomposition,

the merging criteria requires that Rj could not merge with anything of the rest world. In

other words, it is a quasi-atomic region that is distinct and significant enough from its

surroundings. Consequently the following inequality holds for each i?,: c\kJAi + cimJAj <

c0(A - A/), assuming the same tradition of symbol uses. A - A, on the right hand side

represents the rest world of the given execution except Rj. The left hand side contains two

ratios that are directly related to locality of Rf. kj/A j compares its membership set with its

region size, and mjlAi is a ratio of its external messages. The smaller these ratios are, the

better locality a region exhibits. Obviously a pattern with better locality is likely to have

more of its regions satisfy this requirement. On the other hand, this inequality also

captures a balancing mechanism of the region-merging procedure discussed previously.

With the growth of a region, a larger region size Aj tends to force smaller values for these

two ratios, hence better locality for this region. In short, larger regions are likely to have

better locality. This property is derived from the optimality of decomposition, but reflects

the fact of interaction locality that higher-level locality regions are both larger and more

distinct (refer to Chapter 4.2). In other words, the optimality intends to address the set of

locality regions that are naturally formed and exhibited as good locality patterns.

It will not be surprising that the optimal decomposition result also exhibits good

interaction locality. In a distributed execution with a pattern of good locality, locality

regions are distinct from each other, and majority of their associated messages are

internal in the form of coupling relations between member processes. Intuitively, such

coupling should be tight enough to prevent members from splitting apart, and the

tightness is rather a relative measure than an absolute one (e.g., in terms of the number of

coupling messages). This property has been implied via the merging criteria. The optimal

decomposition requires that any two mutually-complement parts of a region are better

150

merged together for improving its performance measure. Suppose a region is formed by

two such parts x andy that have with no common process, i.e., they each involves at most

one behavioral fragment from a member process. The following inequality holds: m/(AxAy)

> C0/C2, where Ax and Ay denote respectively the size for x and y, and m denotes the

number of their messages in between. The tightness of coupling hence can be measured

by m/(AxAy) and is required to be at least proportional to the size of both parts (since C0/C2

is a constant). It applies to any two mutually-complement parts within a region. Let kx

and ky denote the number of processes involved in x and y respectively. In case that kx = 1,

part x is actually a behavioral fragment of a process, say px. Good locality of a behavioral

fragment is usually reflected by a large ratio of important partner messages, and a small

number of important partners compared with a large fragment size. Both properties are

derivable from the above inequality. Each behavioral fragment satisfies the following:

m/Ax > Ayco/cj and m/ky > Ax x (Ay/ky) x (co/ci). Here m/Ax represents the ratio of px s

messages interacted with the other ky processes of the locality region, which are usually

the important partners for px in this behavioral fragment. This ratio is required be at least

proportional to Ay, the total number of message events from other processes. In addition,

m/ky represents the average recurrence of important partners and should be at least

proportional to both Ax and Ay/ky, i.e., the length of the behavioral fragment of px, and the

average length of those from its important partners.

To sum up, good interaction locality leads to good performance, and can serve as a

good candidate for the optimal decomposition. Patterns with good interaction locality

consist of distinct locality regions which are feasible to identify. As shown in Chapter 4, a

bottom-up approach can be adopted to decompose the 'static' trace of a given distributed

execution. However, such information will become incomplete for checkpoint and

recovery protocols at run time. Next chapter addresses related issues on managing

151

information of locality regions for optimized overall performance of group checkpointing.

5.2 Identifying Locality Regions for Group Checkpointing

Given a distributed execution, group checkpoints are better managed around locality

regions for improved overall performance. Since group checkpoints are created along

with the execution progress, each locality region needs to be identified accordingly on the

fly. In fact, each group checkpoint protocol can be considered as an abstract framework

for locality region identification, using a dynamic mechanism that is similar to the prefix-

pruning scheme discussed previously in Chapter 5.1.2. For example, in the AGC protocol

(refer to Chapter 3.3.3), a group initiator spreads the group formation invitations to its

potential members, which upon receipt of such a message will decide to join or not to.

The decision of both invitation list and group joining is based on individual perception of

future locality from respective processes. A region is hence formed by composing

behavioral fragments of actual member processes, and will be considered as equivalently

pruned (i.e., losing its effective value of use) once successive group checkpoints are

created afterwards. In this protocol, the missing part is the actual decision-making

mechanism supported by appropriate locality knowledge about the given execution. On

the other hand, interaction locality is hierarchical in nature, and the optimal performance

leads to decomposed locality regions at a certain level. The desired locality knowledge is

therefore only decidable if the performance constants Co, ci and c2 are specified. This

chapter assumes that these constants are given a priori in the following discussions. Also

assumed is the proper handling of program-order dependencies among group checkpoint,

say via process cloning, or its alternatives that are discussed in Chapter 5.3.

A challenge for on-the-fly identification of locality regions arises from the

unavailability of concurrent as well as future knowledge in distributed systems. The

152

identification procedure requires such knowledge because group checkpoints and their

corresponding logging policies are determined right before the formation of locality

regions. Regarding each locality region, a group checkpoint protocol needs to decide the

following a priori: i) which process should initiate a group checkpoint and when to do so;

ii) which processes should be involved; iii) when each of its members should leave the

group. All these decisions are to be made based on awareness of the concurrent and future

locality patterns from each involved process. Inaccuracy or unavailability of such

information might cause undesirable and even greatly degraded performance.

Fortunately, properties of interaction locality make it possible to obtain sufficient

locality knowledge from both design time and run time. In particular, information about

task decomposition and the hence-resulted locality management is the major outcome at

each design level. It could be easily made available for runtime uses in different ways,

e.g., in terms of agent roles, agent protocol sessions, parallel architectural skeletons, etc.

In fact, such information is widely-used in standard communication protocols,

programming libraries, application design platforms, etc. On the other hand, due to the

intrinsic nature of locality, future interaction patterns of a process is largely predictable at

run time, based on observation of its recent activities. In properly-designed checkpoint

protocols, concurrent knowledge can be obtained at run time, through implicit or explicit

message exchanges. And thanks to the tight-coupling of group members, concurrent

knowledge could be delivered effectively and in time. In addition, performance will not

be greatly affected since this could be done asynchronous via message piggybacking, or

synchronously via a few extra system-level messages. Discussed in the following

chapters are detailed strategies with example protocols that make use of such design time

or runtime knowledge for group checkpointing.

153

5.2.1 With Design Time Assistance

Distributed applications, especially those in large scales, are complicated systems. Design

of such a system usually has to follow a top-down approach and to apply the divide-and-

conquer strategy hierarchically. The results produced at each level could be very useful in

terms of locality identification. The following demonstrates such a design procedure.

In general, a distributed application is about resolving a specific task in a distributed

manner. At the first design stage, a given task is decomposed into a set of subtasks

together with an abstract task pattern, e.g., a parallel structural or behavioral skeleton

[WLG04], Depending on the solution strategy used for the given task, this task pattern

could be of different types, e.g., singleton, master-slave, pipeline, divide-and-conquer, etc.

Each task pattern captures the pattern-specific communications between subtasks and

their corresponding interfaces, which could be customized by specifying certain

parameters upon actual use. In addition, a task pattern is usually composable and its sub-

tasks can also be further resolved in a similar way. The result of this design stage is a

hierarchical composition of subtasks, each formed by an abstract singleton that is to be

concretized with its own subtask logic and control mechanism.

A subtask is accomplished through collaboration of processes that play different roles.

The next stage of design addresses this issue and decomposes each subtask into a set of

coordination patterns. A coordination pattern consists of a set of roles that follow a

specific communication procedure to achieve a goal. For example, a blackboard pattern

provides a medium that allows all participants to monitor the progress of each other and

to share public information. Popular coordination patterns include blackboard, meeting,

market-maker, master-slave, negotiate, etc. [DWK01], Nesting of patterns is also possible,

in which case a sub-coordination works as a small and temporary subtask. For example,

an interim meeting could be scheduled between several brokers within a large market-

maker pattern. A coordination pattern defines the life-cycle for each member role, and

154

hence introduces temporal and spatial coupling between them. As a result, its subtask has

a corresponding space-time sub-region that involves all of its communication messages.

A role is a logical behavioral unit and needs to be mapped into an actual process

when a design is final. Simultaneous roles are possible for one process if these roles are

within the same subtask. In addition, popular interaction patterns between processes, such

as request, query, contract-net, auction, proposal, have been standardized and widely used,

e.g, in the form of FIPA interaction protocols [FIP03]. Such patterns usually involve only

two or a little more processes and several rounds of message interactions, therefore serve

as a low-level communication layer in addition to the coordination patterns at the middle

level. Due to the complication rising from role mapping, a corresponding sub-region at

this level might not have interaction locality as good as the mid-level ones.

The above design procedure shows clearly the hierarchy as well as the proper

containment relations between patterns at different design stages, namely, task pattern,

coordination pattern and interaction pattern. Due to the complexity introduced by large-

scale-ness, design of many distributed applications might not follow exactly these steps,

but are very likely to result in the similar hierarchical structures. Good locality originates

from well localized application logic, and leads to proper decomposition at each stage as

well as distinct locality regions at corresponding levels. On the other hand, considerable

efforts have been made to develop design methodologies [KenOO, DWK01, GSP02] as

well as programming frameworks [HSP05, SEA+07, HRV+08], in order to provide

supports for all types of patterns. These results and products not only benefit application

designers and programmers, but also disclose information about the locality patterns at

different levels. For example, in a distributed application that uses FIPA interaction

protocols, a message is usually tagged with: i) the type of the interaction protocol in

which it is generated, and ii) the identifier for that protocol instance (i.e., 'conversation-

155

id' in ACL specification [FIP03]). Roles of sender and receiver could also be tagged if

necessary. Similarly, information about task patterns and coordination patterns can be

made available at run time, in both individual processes and their messages. Such

information might include the type as well as instance identifier of each pattern, and the

types of important roles played by each process, in particular, subtask managers and

coordination initiators.

As discussed previously, a group checkpoint protocol needs to know the following

about a locality region: i) the checkpoint initiator and its emerging moment; ii) the list of

group members; and iii) the dismiss time for each member. A specific protocol might not

need all the above information. For example, the AGC protocol requires i) and ii) only

because group members automatically dismiss when new checkpoints are taken

successively. In general, requirement i) is easy to assure at design time and to become

accurate enough at run time. A simple way is to make use of the message tagging and

checking mechanism such that a pattern initiator could be identified once it starts sending

its pattern-specific messages. Requirements ii) and iii) can be satisfied via the diffusion

of messages that are tagged with pattern identifiers. In other words, the pattern identifier

when tagged over messages will serve as a unique 'color' for its corresponding group,

and hence will be able to distinguish the group from others (refer to the group coloring

mechanism introduced in Chapter 3.3.2). What is essentially required is a numbering

scheme for all pattern instances at each level and the corresponding message tagging.

This can be easily implemented by modifying the supporting libraries of the abstract

patterns and their messaging mechanism.

Another critical issue to be resolved is regarding the hierarchical nature of interaction

locality. Given a set of performance constants Co, c\, and cz, analysis from Chapter 5.1

concludes that the optimal decomposition coincides with locality at a certain level instead

156

of an arbitrary level. A protocol needs to know which levels of locality patterns should be

used for group checkpointing. In other words, should groups be formed around subtasks,

coordination patterns, or interaction protocol sessions? The size upper bound A* for

locality regions (refer to Chapter 5.1.2) implies that the number of message events

associated with each group should be limited (up to A*). In fact, the scale of a certain type

of pattern is usually well parametrized at design stage and is specified during

implementation. Such examples include the number of processes involved in a master-

slave skeleton, the number of roles instantiated in a blackboard coordination pattern

serving as participants, and the rounds of bids to be performed in an auction protocol

session. Related information can be made available for runtime use, e.g., by inserting into

each pattern a counting layer that works during the pattern initialization.

Assuming feasibility of obtaining the above-discussed knowledge, a simple group

checkpoint protocol can be developed, as a variant of the AGC protocol. In particular, it

relies its efficiency on the following assumptions about a given distributed execution:

(a) By-design locality patterns are hierarchical and are properly contained. Pattern

embedding or overlapping is considered as forming next-level patterns.

(b) Locality patterns at the same level are numbered, each assigned with an instance

identifier. Any locality pattern X, at a lowest level k is presented by a unique tuple Z,

= <z'o, i\, h, ..., ix, .., /p% 1 < x < k, where each ix is the instance identifier for its

containing pattern at level x. A tuple L, is said compatible with tuple Lj (written as Li

c Lj) if its locality pattern is the same as or is contained within that of Lj.

(c) Each role inherits the same tuple from its host pattern. Simultaneous mapping of

multiple roles Lo, L\, ..., Z, to a same processpt is only for roles with tuples that are

compatible with one another, i.e., LQ L\ 2 ... 2 Li, and pt inherits the most

compatible tuple Z,,.

157

(d) Each application message is tagged with a pair of tuples from both the sender and

the receiver.

(e) Each pattern has a designated initiator. Knowledge about the size of each pattern

is made available to the initiator upon its participation into the pattern.

Among the above assumptions, condition (a) guarantees that all patterns are properly

contained in one another and hence each of them could be identified with respect to its

containers at each level. Condition (c) is prepared to avoid messages across low-level

patterns that belong to different high-level containers. Note that the purpose of these two

conditions is just to simplify the following protocol design. They could be relaxed with

use of complicated control mechanism. Described below is an optimized AGC (oAGC)

protocol that makes use of the above conditions for achieving better performance.

Starting a group: An initiator process can start a new group around a locality pattern at a certain level,

based on its knowledge about the pattern size. It will use the pattern tuple as the group color and take a

colored checkpoint before sending the first message of that pattern.

Joining a group: Upon receiving a message in a new color, if the tagged tuples are compatible with one

another and are also compatible with the color tuple, a process will join the corresponding group by taking

a new checkpoint with the new color.

Logging policy: Messages are all colored at sender side. A message will not be logged only if its tagged

tuples are compatible with one another and are also compatible with its color tuple, and the corresponding

message dependency edge will be recorded.

Figure 5.2 shows the same example used for the AGC protocol in Chapter 3.3.3,

except that there are three properly numbered locality patterns Lo = <0>, L\ = <I> and

L\fi = <1,0> formed by design and such information is available to their initiators Pj, pk,

and pm respectively. Before sending message M\, PJ starts a 'red' group around LQ and

colors m\ with Lq. Since m\ is colored as same as its sender and receiver,/?,- joins the 'red'

group by taking c, upon receiving it. Similarly, m-i will not be logged. Meanwhile, pk

initiates another 'white' group around L\, which subsequently involves pm and p„ via

158

message m4 and m6. Note that within L\, there is a sub-level locality pattern Zi,o that

involves pm and pn only. Upon receiving m4, pm joins the 'white' group, since its own

tuple <1,0> is compatible with m4's sender tuple <1> that is as same as m4's color tuple.

p„ also joins by observing that m6 has the same tuple <1,0> for both sender and receiver,

which is compatible with its color tuple <1>. In addition, messages ms and mj have

different tuples for their sender and receiver and they will be hence logged.

(a) An example execution (b) CDG

Figure 5.2 Checkpointing with the oAGC protocol

Theorem 5.1: The oAGC protocol is correct and creates atomic group checkpoints.

Proof: In the logging policy, the compatibility checking guarantees that messages

sent from outside of the locality pattern being checkpointed are always

logged. Otherwise, a message dependency edge is included in the protocol

CDG. Hence the CDG is always proper and the protocol is correct.

From the protocol, a checkpoint is always created before a group member

sends or receives its first message of the locality pattern being

checkpointed. As a result, any two checkpoints of the same group are

causally consistent. Hence the condition (a) on consistency holds (refer to

Definition 3.6 in Chapter 3.3.3). In addition, once a checkpoint is created,

the process will apply the logging policy to all received messages based on

159

their coloring. Since any message carries the new color once a checkpoint

is taken, no group member will log a message with the same color. Thus

condition (b) on uniformity also holds. •

The oAGC protocol is simple and efficient. The pair of sender/receiver tuples tagged

with each message automatically informs the receiver about its host pattern and

compatible (container) patterns at all levels, as well as those for the message itself. The

group color then indicates the locality pattern to be checkpointed, and its spread along

with messages actually covers the target locality pattern. The compatibility checking

mechanism works like the masking scheme used in network addresses: messages are

logged if they are not between processes within the desired pattern. In addition, the

proper containment of hierarchical patterns guarantees that the tuple representation will

work effectively and efficiently. The simultaneous role mapping assumption eliminates

complicated pattern overlapping and simplifies both group checkpoint and logging.

The oAGC protocol can effectively manage group checkpoints around desired

locality patterns. On the other hand, the accuracy of so doing towards performance

optimization is completely based on the fixed knowledge of initiators. In fact, such

information is only easy to collect statically and in the spatial form, e.g., the number of

participants dining initialization of locality patterns. However, there are situations where

roles and coordination patterns are dynamically added due to real time needs, and this

could affect the accuracy and hence the performance. Alternatively, these dynamic

changes could be monitored and estimated on the fly, and could be then made use of to

assist group checkpointing. Discussed next are issues and strategies in this regard.

5.2.2 Via On-The-Fly Detection

Identifying a locality pattern is complicated in case of no enough design time knowledge.

For example, a pattern initiator is only recognizable as the process which sends the first

160

pattern message. However, to distinguish initiators for patterns at different levels, it is

still necessary for messages to tag their pattern types. In addition, any process can only

decide its participating time for a locality pattern once it sends or receives its first pattern

message.

Interaction locality provides another choice from a different perspective. Since a

locality pattern forms a locality region at the corresponding level, each participant

process often has a behavioral fragment with quite good locality as well. As discussed

previously in Chapter 5.1.3, this implies a small (important) partner set with a large

fragment size, and a large ratio of important partner messages. Consequently, the

important partner set can be detected after just a few rounds of interactions, e.g., by

observing a stabilization of stack distance values. In addition, a major change of such

values and the top-most stack objects (i.e., the set of most recent partners) is very likely

to indicate a transition between adjacent locality patterns. On the other hand, similar to

the bottom-up approach used in Chapter 4, individual process can compose their

behavioral fragments together following the tight-coupling relations between each other.

More importantly, due to the hierarchical nature of interaction locality, information about

the most recent locality pattern can serve as a good predication for the next future locality

pattern at the same level, e.g., the important partner set and the expected participating

duration of each process. Good interaction locality benefits all the above schemes: a

small number of occasional partners leads to fast detection of the important partner set for

each process; a small portion of inter-region messages helps identifying individual

locality patterns; moreover, good predictability provides desired information and hence

improves the detection procedure.

Given a set of performance constants Co, c\, and C2, the optimal decomposition

coincides with locality patterns at a certain level. From Chapter 5.1.2, the resulted

161

locality regions have an upper bound A* for their sizes. A simple solution hence is to use

A* as the given bound k in the BAGC protocol (refer to Chapter 3.3.5) and to form group

checkpoints accordingly. However, A* only serves as a theoretical limit, and its value

could be larger than what is actually required to be. In other words, many regions might

have a better performance measure if their sizes could become a bit smaller than the exact

value of A*. In fact, using the merging criteria, the prefix-pruning scheme discussed in

Chapter 5.1.2 can be adapted to a greedy algorithm, which dynamically composes tightly-

coupled processes to form adequate locality regions. In particular, based on the most

recent interactions, a group initiator can detect its important partner set and initiate

invitations to such partners for joining its group. The decision on invitation list as well as

group joining will be based on the merging criteria. The group will keep growing until

the group measure stops being improved. During this procedure, information about the

past groups will be used to decide the future groups. The following dynamic NGC

(dNGC) protocol is such a candidate. It is based on an assumption that special processes

are designated at design time as locality pattern initiators, which is valid in most cases

especially for low-level locality patterns, e.g., FIPA interaction protocols.

Starting a group: An initiator process can start a new group by first taking a colored checkpoint and then

append its color to its outgoing messages. An invitation list consisting of important partners invited to join

this group is constructed based on the initiator's perception of future locality.

Perceiving the future interactions: A process perceives a future locality of interactions once it observes a

stabilization of both its stack distance values and its most recent partner set. It then constructs its important

partner set accordingly.

Propagation of invitation: The invitation list is appended to the first application message sent from a

member of the group to a process in the invitation list.

Propagation of causal group knowledge: A process collects knowledge about its group partners that is

causally available to it via the messages received from its partners. Such knowledge includes the group

partner set, and the behavioral fragment size of each partner. It continues propagating the knowledge by

appending its current knowledge base to every outgoing message.

This causal knowledge will be used for estimating the merging criteria when deciding to join or leave a

group, or to merge two groups. A decision of growing a group will be made only if the resulted group

162

performance measure can be improved.

Leaving the current group: A process can create a minimal and colorless checkpoint at any time when it

perceives no further tight coupling with the current group (hence no more improvement of the group

measure). A colorless checkpoint reflects that it is not part of any group yet.

Acceptance/decline of invitation individually: An invitee process may make an individual decision upon

receiving a token invitation. It can decline to join a group by taking no action, if its perceived future

locality differs from the inviter's. It might accept an invitation (promptly or later) as an individual, if its

perceived future locality is similar to the inviter's but different from its current group. In such as case, it

will either create a new checkpoint with the new color, or convert the existing colorless checkpoint into one

with the chosen color.

Merging of two groups: An invitee process might also suggest a merging of its old group with the inviting

group (based on its local knowledge and received knowledge from the inviter), by submitting a suggestion

message to each initiator. The invitation message will be logged based on its color.

The suggestion message will be appended with the invitee's knowledge about each group, including the

color, the initiator, and the merging factors. The two initiators then will establish a two-phase handshaking

to reach an agreement about whether to merge or not, say started by the initiator with a smaller process id.

Decision will be made at both sides based on their estimation of the merging criteria. In case of merging, a

new initiator will be elected, say the one with a smaller process id, and information about the merged group

will be broadcasted to every process of the new group, which upon receipt of such information will update

its color, initiator, and local knowledge base.

During this procedure, any merging suggestion received will be re-considered after an agreement is made,

and any handshaking message regarding another merging agreement will be replied with an answer of no

merging. No action will be taken if a merging decision is not made.

Group dismiss: A group initiator will enforce a group dismiss if it observes an increase of the group

performance measure. It will broadcast a dismiss message to every member, which in turn will create a new

colorless checkpoint.

Logging policy: Messages are tagged with the color of the sender. Any message tagged with the same color

as that of the receiver will not be logged, and the corresponding message dependency edge will be recorded.

A message from/to a colorless checkpoint is always logged.

Figure 5.3 shows an example of dNGC checkpointing around three locality patterns

with initiators pj, pk, and pm respectively Processes pm and p„ have initially left their

previous localities and created minimal (and colorless) checkpoints cm and c„. Message

mi is hence logged, pj sends an invitation message m\ to pi based on its perception of

future locality, and pi takes c, to join the corresponding 'red' group. When pk perceives a

163

future locality involving pj and pm, it sends its invitations via messages and ms in order

to form a 'white' group. However pj is still in its current locality with pi upon receiving

ms, it logs ms for the time being. Later on when pj perceives a change of its locality, it

makes an individual decision of joining the 'white' group (by taking a new checkpoint

Cj+1). Consequently, m-] is sent with a 'white' color and is not logged. On the other hand,

when pm enters a locality that involves p„, it sends out its invitation via m^ and p„ in turn

joins its 'blank' group. Later when pm receives m4, it decides to merge its current group

with the inviting 'white' group by sending a suggestion message ma to pk. Since pm is

currently a group initiator, an agreement is made once pk accepts the group merging, pk

then notifies everyone in the new group including pm via messages my, mc, and mj.

Subsequently pm and p„ change their colors into 'white'. Figure 5.3(b) shows the

corresponding CDG with use of cloning, where the message dependency between Cj and

Ck and the program-order dependency between c, and cy+i are removed.

(a) An example execution (b) CDG with cloning

Figure 5.3 Checkpointing with the dNGC protocol

Theorem 5.2: The dNGC protocol is correct.

Proof: Since neither the group merging nor the group dismiss affects message

coloring or message dependency recording, the logging policy maintains

164

the properness of the protocol CDG in the same way it does for the NGC

protocol. Hence the claim. •

The dNGC protocol provides the option of group merging, which allows dynamically

growing a group checkpoint towards optimizing the overall performance. The relaxed

requirement of non-atomicity is critical here, as otherwise it is impossible to maintain

consistency of the after-merging group checkpoint or the uniformity of logging policy.

On the other hand, the protocol requires each group to dismiss once the corresponding

group measure starts to increase. This prevents group from getting over-sized and thus

further improves the decomposition result.

Good locality leads to good overall performance of this protocol. It should be noticed

that the above advantages as well as flexibilities are on the cost of logging extra messages,

especially those between groups being merged. Good individual locality results in fast

detection of important partners and hence avoids further logging of such messages. In

addition, the decomposition result will become close to the optimal if accurate enough

information has been taken for estimating the merging criteria. Good locality of locality

regions leads to frequent message passing between partner processes within each region,

which benefits the propagation of causal knowledge and hence improves the knowledge

accuracy. Moreover, the dNGC protocol employs explicit kernel messages for merging

suggesting, agreement making, and decision broadcasting, which also adds extra costs to

the runtime performance. However, in locality regions with good locality, partners

usually have uniform inter-coupling between each other. As a result, chances of group

merging will be greatly reduced and so as the corresponding kernel messages.

165

5.3 Design Choices for Checkpoint Protocols

The performance of checkpoint and recovery is affected mainly by the three factors

captured in the cost-efficient measure E regarding each recovery group, i.e., the group

size, the number of participant processes, and the number of external messages. The

various group checkpoint protocols demonstrated previously in this chapter as well as

those in Chapter 3 are proposed to improve the overall performance from these aspects.

Besides the above major and inevitable concerns, there are also several types of minor

performance costs that can be flexibly tuned upon the protocol designer's choice.

In general, a checkpoint protocol is designed to properly handle all dependency

relations that exist between its target recovery regions in order that failures will be well

confined within each individual region. As discussed in Chapter 3.2, message logging and

process cloning are effective ways for handling respectively message and program-order

dependencies. In particular, the following needs to be guaranteed for each recovery

region by the checkpoint protocol: i) in-transit messages across the group checkpoint cut

and external incoming messages across the group boarder should be fully logged; ii)

orphan messages across the group checkpoint cut and external outgoing messages across

the group boarder should have at least their sequence numbers logged; and iii) a clone is

created for any process that could possibly leave the group while others are still in inside.

Process failure

Figure 5.4 An example execution with failure

A message could be logged (fully or otherwise) by either or both of the sender and

the receiver. Figure 5.4 shows an example execution involving two processes p\ and p2.

Legends:
• Message event

— A p p l i c a t i o n message
|] Local checkpoint

166

Suppose p2 has a failure before receiving m^ and has to roll back from checkpoint c2.

Afterwardsrequires to: i) discard m\, ii) replay and iii) receive m3. Discard of m\

can be done by either p\ or p2, which should have a record of m\'s sequence number.

Similarly, m2 can be replayed either locally by p2, or remotely by p\. Obviously sender-

side discard and receiver-side playback are more efficient and hence more preferable. In

addition, receipt of m^ should be supported by the communication layer such that any

still-in-transit message like will be eventually delivered to the receiver once the

receiver is recovered to its pre-failure state. In other words, the receiver queue integrity

must be preserved. For efficiency sake, it is better to log (full) messages at the receiver

side, which is also the assumption used in many checkpoint protocols. However, as

discussed in the following, the choice of (redundant) sender-side logging provides more

flexibility for checkpoint protocol design.

5.3.1 Atomic Group Dismiss

Process cloning is a recovery technique for proper removal of program-order dependency

relations between checkpoints. In group checkpoint protocols, it can be used to prevent

recovery spread among successive groups. For example, in Figure 5.5,p2 forms a 'white'

group with p\ upon the invitation message m\, and later on chooses to join a 'red' group

with pi upon an invitation via m^. However, p\ still remains as a member of the 'white'

group after p 2 s leave. Some time later, a failure ofp\ (as shown in the figure) will trigger

recovery of both groups due to existence of the common process p2. In particular,

message m2 needs to be replayed by p2 that is rolled back to c2, unless a process clone of

p2 is in pace and does this job for it. In particular, such a clone is created for the purpose

of replaying messages for other members of the old 'white' group, as these messages are

not logged at either the sender side or the receiver side. It hence has a limited lifetime and

will be killed after the playback mission is accomplished, say via a countdown of the

167

number of its outgoing messages. Obviously the trade-off here is between the cost of

creating a clone at recovery time and the cost of logging all the messages to be replayed

at run time. However, such a decision is never straightforward to make unless upon

joining p2 is known to be leaving the 'white' group early. Another choice is to have a

clone standing by whenp2 leaves the 'white' group. This stand-by clone will be in action

just like p2, only within the old group and only when a recovery of that group is triggered.

It will exit when that group is finally dismissed. Again the trade-off between the two

types of clones is cost on recovery need versus cost of standing by.

A clone is not always necessary, for example, if a group could dismiss atomically. In

other words, all members leave the group as if instantaneously, and a subsequent failure

of any member will not trigger a recovery of this group. Atomicity might be made

possible via proper protocol design.

In general, atomic protocols are usually preferred in distributed systems. A group

action is said to be atomic if the corresponding result is as if it has been performed

instantaneously. As an example, the AGC protocol is atomic because it creates every

group checkpoint as if instantaneously. In this protocol, atomicity also implies uniformity

of message logging with respect to the group formation. The as-if instantaneity is

managed via ori-the-fly decision of the group membership: a diffusion-based procedure

spreads the group color that is carried over every group message and the receiver can

easily decide its logging (based on the assumption of receiver-side logging). This

protocol is appreciated due to its minimized logging efforts that avoid logging waste, and

Legends:
• Message event

— A p p l i c a t i o n message
Local checkpoint

Process failure

Figure 5.5 An example of atomic group dismiss

168

its non-blocking property that eliminates progressing waste. Alternatively, blocking

protocols are easier to design, and non-atomic protocols are more flexible to use.

A nai've atomic group dismiss is to block the execution of any group leaver until the

group finally ends. However, this requirement can be relaxed to only blocking certain

actions of the group leavers. In general, if a process leaves its old group early, it does not

wish to spread a recovery from its own group to its new group. To do that, it has to be

blocked from sending any message to its new group, until the old group dismisses. At the

same time, it also needs to log the messages received from its new group. In other words,

it behaves as if it is not a member of the new group yet, and thus it has enough

information logged to be able to recover with the old group alone (instead of involving

other members of its new group). The checkpoint it takes upon leaving the old group is

hence tentatively colorless until that group ends. In this strategy, instead of the complete

execution blocking, a group leaver pays a price of extra logging, plus the potential

blocking at the point of sending a message to the new group.

The above strategy can be further improved to become non-blocking. For a group

leaver to be able to send messages to its new group safely, it also needs to perform

sender-side logging of (the sequence numbers of) those messages. This will guarantee

that if its old group recovers, it could discard such messages by itself. For the above

example in Figure 5.5, upon the invitation message m3 from the new 'red' group, p2

leaves its old 'white' group by taking a colorless checkpoint, and then proceed tentatively

with sender- and receiver-side logging of messages to and from the new group,

respectively, e.g., ms and m .̂ Note that it also perform receiver-side logging of message

from its old 'white' group, e.g., m4, due to the color difference between its current

checkpoint and its old group. In case that a failure occurs in the old group, say inp\, all

previous group members including p2 will roll back to their 'white' checkpoint. Since p2

169

keeps a log for both incoming and outgoing messages of its new group (m3 and ms

respectively in this example), it is able to perform receiver-side playback and sender-side

discard accordingly. Consequently, there is no recovery spread to its new group. On the

other hand, if a failure occurs in its new group, say in p3, recovery will roll back all

members, including p2, to their corresponding checkpoints. Since p2 also has a log of

incoming messages from its old group, e.g., in the figure, it could perform receiver-

side playback accordingly and its old group will not be involved in the recovery as well.

Note that m6 will be replayed but will then be discarded by p\ based on its receiver-side

logging (w6 is logged initially due to the color difference). The above redundant logging

with respect to the new group will stop when the old group actually ends, i.e., all

members have created a new checkpoint.

The non-blocking atomic group dismiss is feasible with the cost of further extra

logging. A trade-off can be made based on estimation or perception of future interactions.

For example, a future locality of frequent interactions with the new group members will

encourage blocking instead of proceeding and logging.

In summary, to prevent recovery spread among group checkpoints, either process

cloning or atomic group dismiss is required. The former provides choices between cost

on recovery need and cost of standing by. The latter pays the price of execution blocking

and/or extra logging of certain messages with respect to the successive new group.

5.4 Remarks

This chapter addresses performance-related issues in locality-driven checkpoint and

recovery, and makes its contributions in three aspects. An abstract performance measure

is first proposed from the perspective of decomposed recovery regions, and captures the

major influential factors of distributed checkpoint and recovery. It is generic enough to

170

measure the performance of existing as well as the new group-based checkpoint strategies.

It can also serve as an optimization objective to guide the development of group

checkpoint protocols. Consequently, a distributed greedy scheme is proposed for dynamic

detection of locality regions, in which locality regions are locally decidable through

region merging. A merging criterion is deduced with discussion of its implications. In

particular, the optimal decomposition is demonstrated to be related to interaction locality

at a certain level. Good interaction locality leads to good performance optimality, and can

serve as a good candidate for the optimal decomposition. Based on these results, this

chapter develops runtime strategies for detecting locality regions in a given distributed

execution. Availability of design time knowledge is discussed and a simple group

checkpoint protocol is developed accordingly. On-the-fly detection of locality regions

benefits from good interaction locality, and is demonstrated through another group

checkpoint protocol. Finally, design choices for checkpoint protocols are discussed with

respect to their performance costs. In particular, atomic group dismiss strategies are

presented as alternatives to process cloning.

This chapter develops many of its results based on the abstract performance measure.

The measure is simple and yet powerful enough to capture the essence of locality-driven

checkpoint and recovery. On the other hand, it is based on two simple assumptions about

uniform distribution of events and equal failure probability over events, which certainly

have their limitations of applicability. The measure as well as the corresponding model

can be amended by more complicated assumptions, e.g., with annotating actual execution

time to each behavioral fragments, and using different failure probability distribution

functions. However, this will only complicate the analysis process, and will not change

the principle of locality or the applicability of the results developed in this chapter.

171

Chapter 6

Conclusions and Future Work

6.1 Conclusions

Checkpoint and recovery provide application-transparent fault-tolerance to distributed

systems. Existing strategies, checkpoint- and log-based recovery, suffer from either

severe runtime performance downgrade or catastrophic global-wise recovery waste in

large-scale distributed systems, due to the large numbers of processes and messages that

could be involved. In this thesis, a locality-driven checkpoint and recovery strategy has

been proposed to offer such systems benefits in both aspects, making it possible and

efficient to achieve affordable runtime performance and controllable failure

recoverability in a harmonious manner.

The two categories of existing checkpoint and recovery strategies have different

consistency requirements due to their ways of handling message dependency relations

between processes. By forcing a specific and uniform policy to all message dependencies,

such a strategy gains advantage at one end but has to bear disadvantage at the other end.

The theory of Quasi-Atomic Recovery hence has been formulated as a more generic

foundation to accommodate the specific consistency requirements of both kinds. The

quasi-atomicity property of recovery blocks covers all kinds of existing checkpoint and

recovery techniques, and allows the use of different message handling methods together

172

at the same time. As a result, it is possible to selectively handle certain messages in one

way and the rest in the other way. The theorem on confinement of recoveries within well-

ordered quasi-atomic recovery blocks, on the other hand, provides an integrated view for

investigating localizable checkpoints and recoveries, and consequently having a hybrid

strategy with combined advantages from both ends. The Checkpoint Dependency Graph

(CDG) model has also been presented to capture effective dependency relations among

checkpoints, namely message dependency and program-order dependency. Correctness

requirement of checkpoint protocols is therefore simplified as demanding properness of

the corresponding CDG. In addition, a generic recovery protocol has been proposed with

proved capability of performing correct recoveries.

Based on the observation of localized message interactions in distributed systems,

the idea of group checkpointing and selective logging has been proposed and illustrated.

The existence of 'locality regions' makes it feasible to manage group-wise coordinated

checkpoints around subsets of processes that are tightly coupled via frequent message

interactions, and to log only the few inter-group messages afterwards. Runtime overhead

is optimized due to the reduced efforts of message logging, and recovery spread is

localized via the proper handling of inter-group dependencies. Various group checkpoint

protocols that make use of the locality phenomenon have been developed with proofs of

correctness using the CDG model. These protocols employ simple and asynchronous

designs such as message piggybacking, invitation-based group formation, and use of

color tagging for group identification. They have respective features including strong-

ness, atomicity, non-atomicity, and A:-bounded-ness, providing efficient trade-offs

between flexibility and performance. The technique of cloning-based recovery has also

been introduced to effectively remove program-order dependency, hence to provide

further design choices for limiting the growth of group checkpoints. Group checkpoint

173

protocols with cloneable checkpoints have recoveries easily confined within each group,

which otherwise requires complicated protocol design and might not be always

achievable.

The locality phenomenon of message interactions in distributed systems has been

examined and exploited. Analysis has been performed to provide an overall view from

the perspective of distributed program design and implementation. Like traditional

locality of reference, interaction locality is resulted from practices of applying the generic

divide-and-conquer strategy in problem solving. Global dependencies in distributed

applications are parallelized and localized among processes, and are finally resolved via

message passing. Distributed executions are hence likely to exhibit a hierarchical 'region-

transition' pattern. Each region consists of a sequence of localized interactions from each

participant process. Based on this observation, a bottom-up approach has been proposed

to start identifying those regions from the perspective of individual processes. A generic

notion of 'locality interval' is introduced to capture popular recurrence patterns within

individual process lifelines. Frequent message interactions between such intervals are

modeled as 'important coupling', by which they form a 'locality region' that contains

localized messages. Concepts of qualified locality intervals and primary important

coupling are also brought up to filter out trivialities and deviations that arise in practice.

Test cases have been designed and experiments have been conducted accordingly on

traces from two real-life distributed applications. Results and analysis have justified the

existence of hierarchical locality regions and the feasibility of proposed approach as well.

Finally, performance optimization of group checkpoint strategies has been studied

through demonstrating its relation to interaction locality. An abstract performance

measure has been proposed to properly integrate the major aspects of both runtime

overhead and failure recoverability in a region-wise manner. It hence can serve as an

174

optimization objective of the overall performance of distributed checkpoint and recovery.

A greedy optimization heuristic is proposed to decompose a given distribution into a set

of disjoint recovery regions, in which such regions are locally decidable through region

merging as long as it improves the objective. A merging criterion is reasoned and it

implies that performance optimality is related to interaction locality. A pattern with good

locality leads to good performance, and the locality pattern itself can serve as a good

candidate for the optimal decomposition. Subsequently, detailed strategies have been

developed to detect locality patterns in a given distributed execution, and specific

protocols are presented with assistance of either design time knowledge or runtime

locality prediction. In addition, performance-related design choices for checkpoint

protocols have been discussed with respect to their specific requirements and costs.

Aiming at preventing recovery spread across group checkpoints, strategies for atomic

group dismiss strategies are introduced in particular, with contrast to process cloning.

6.2 Future Work

This thesis has laid down the major milestones for achieving well-performing checkpoint

and recovery strategies in a locality-driven manner. Besides, there are a number of

directions for this work to continue with.

A straightforward way to examine the locality-driven checkpoint and recovery

strategy is to conduct experiments and to compare the actual performance with other

strategies. This is actually a piece of work that is already launched and is currently

undergoing. In particular, a discreet event simulator is used as the experimentation

platform, and a synthetic trace generator of distributed systems is built to prepare the

input data. The simulator has been adapted to become a specific test-bed for checkpoint

and recovery algorithms, with several traditional algorithms implemented. Proper test

175

cases are to be designed with careful examination of different runtime parameters.

Execution traces with good locality should observe obvious out-performance of group

checkpoint protocols over traditional ones. Large scale executions with hierarchical and

complicated locality patterns might require proper fine-tuning of the group checkpoint

protocols before the results could spell out themselves. In particular, the protocols based

on runtime knowledge of locality properties would have to go through quite a few rounds

of tests on their detection and prediction strategies, which could possibly raise

challenging questions and lead to a next major research.

Further and thorough study on complicated distributed applications is a next-step

necessity. The two example applications used in this thesis only show limited hierarchical

structures due to the simplicity of their nature. Large scale and complicated applications

are likely to be designed in a more organized hence more localized way. As a result, their

executions are likely to exhibit more interesting locality properties that are worthwhile to

study. For example, domain-specific applications should have their own domain-related

locality patterns, which once being identified can also be very useable in many aspects.

The discussion in Chapter 5 leads to the idea of having a comprehensive

development framework that can provide design time knowledge for locality-driven

strategies. Such a project is complicated, as related information needs to be carefully

examined at each level of details, with consideration of both feasibility and efficiency.

However, interaction locality is a popular phenomenon and is important to performance

of many real-life distributed problems. Availability of such a framework together with

proper locality-driven strategies will greatly improve the performance and hence the

attractiveness of related distributed applications.

176

Bibliography

[AAJ06] M. Aminian, M.K. Akbari, and B. Javadi. Coordinated checkpoint from message

pay load in pessimistic sender-based message logging. In IPDPS'06: Proceedings of the

20th International Parallel and Distributed Processing Symposium, 2006.

[ABC+96] Virgilio Almeida, Azer Bestavros, Mark Crovella, and Adriana de Oliveira.

Characterizing reference locality in the WWW. In PDIS'96: Proceedings of the 4th

International Conference on Parallel and Distributed Information Systems, Miami, FL,

pages 92-103,1996.

[ABL+07] Luca Allulli, Roberto Baldoni, Luigi Laura, and Sara Tucci Piergiovanni. On

the complexity of removing Z-Cycles from a checkpoints and communication pattern.

IEEE Trans. Computers (TC) 56(6):853-858, 2007.

[AER+99] Lorenzo Alvisi, E. N. Elnozahy, Sriram Rao, Syed A. Husain, and Asanka de

Mel. An analysis of communication-induced checkpointing/In FTCS'99: Proceedings of

the 29th Annual International Symposium on Fault-Tolerant Computing, pages 242-249,

Madison, Wisconsin, USA, 1999. IEEE Computer Society.

[AK98] Lorenzo Alvisi and Keith Marzullo. Message logging: pessimistic, optimistic,

causal and optimal. IEEE Trans. Software Eng., 24(2): 149-159, 1998.

[AL98] Yariv Aridor and Danny B. Lange. Agent design patterns: elements of agent

application design. In Agents '98: Proceedings of the 2nd International Conference on

Autonomous Agents, pages 108-115, Minneapolis, Minnesota, 1998.

[Alv96] Lorenzo Alvisi. Understanding the message logging paradigm for masking

177

process crashes, Ph.D. Thesis, Cornell University, 1996.

[ATG08] Bharat B. Agarwal, Sumit P. Tayal, and M. Gupta. Software Engineering &

Testing: An Introduction. Jones and Bartlett Publishers, Sudburry, MA, 2008.

[AW96] Martin F. Arlitt and Carey L. Williamson. Web server workload characterization:

The search for invariants. SIGMETRICSPerform. Eval. Rev., 24(1):126-137, 1996.

[BCS84] D. Briatico, Augusto Ciuffoletti, and Luca Simoncini. A distributed domino-

effect free recovery algorithm. In Proceedings of the Symposium on Reliability in

Distributed Software and Database Systems, pages 207-215, 1984.

[Bel66] Laszlo A. Belady. A study of replacement algorithms for a virtual-storage

computer. IBM Systems Journal, 5(2):78—101, 1966.

[BHR01] Roberto Baldoni, Jean-Michel Helary and Michel Raynal. Rollback-

dependency trackability: a minimal characterization and its protocol. Information and

Computation, 165:144-173,2001.

[BK69] Laszlo A. Belady and C.J. Kuehner. Dynamic space sharing in computer systems.

Comm. ACM, 12(5):282-288, 1969.

[BL88] Bharat K. Bhargava and Shy-Renn Lian. Independent checkpointing and

concurrent rollback for recovery - an optimistic approach. In Proceedings of the 7th IEEE

Symposium on Reliable Distributed Systems, pages 3-12, Columbus, OH, 1988.

[BLL89] Bharat K. Bhargava, Shy-Renn Lian, and Pei-Jyun Leu. Experimental

evaluation of concurrent checkpointing and rollback-recovery algorithms. In Proceedings

of the 6th International Conference on Data Engineering, pagesl82-189, 1990.

[BMOOl] Bernhard Bauer, Jorg P. Miiller, and James Odell. Agent UML: a formalism for

specifying multiagent interaction. In Proceedings of Agent-Oriented Software

Engineering, pages 91-103, 2001.

[BMP+03] Greg Bronevetsky, Daniel Marques, Keshav Pingali, and Paul Stodghill.

178

Automated application-level checkpointing of MPI programs. In PPOPP '03:

Proceedings of the 9th ACM SIGPLAN symposium on Principles and Practice of Parallel

Programming, pages 84-94, San Diego, California, USA, 2003.

[BP07] Ujwala Baruah and Himadri Sekhar Paul. A consistent global checkpoint and

recovery protocol in cluster-based distributed systems. In Proceedings of the 2007

International Conference on Parallel and Distributed Processing Techniques and

Applications, pages 64-68, 2007.

[BPR99] Fabio Bellifemine, Agostino Poggi, and Giovanni Rimassa. JADE - FIPA

compliant agent framework. In Proceedings of the Practical Applications of Intelligent

Agents, pages 97-108, 1999.

[BQC98] Roberto Baldoni, Francesco Quaglia, and Bruno Ciciani. A VP-accordant

checkpointing protocol preventing useless checkpoints. In Proceedings of The 7th

Symposium on Reliable Distributed Systems, pages 20-22, West Lafayette, Indiana, USA,

1998. IEEE Computer Society.

[CC00] Ludmila Cherkasova and Gianfranco Ciardo. Characterizing temporal locality

and its impact on web server performance. In Proceedings of 9th International

Conference on Computer Communication and Networks, pages 434-441, 2000.

[CL85] K. Mani Chandy, Leslie Lamport. Distributed snapshots: determining global

states of distributed systems. ACM Trans. Computing Systems, 3(1): 63-75, 1985.

[CS98] Guohong Cao, Mukesh Singhal. On coordinated checkpointing in distributed

systems. IEEE Trans. Parallel and Distributed Systems, 9(12): 1213-1225, 1998.

[CS03] Guohong Cao, Mukesh Singhal. Checkpointing with mutable checkpoints.

Theoretical Computer Science, 290(2): 1127-1148, 2003.

[CW06] Hailong Cai and Jun Wang: Exploiting geographical and temporal locality to

boost search efficiency in peer-to-peer systems. IEEE Trans. Parallel Distrib. Syst.

179

(TPDS), 17(10): 1189-1203, 2006.

[Dee03] Sayyed M. Deen (Ed.). Agent Based Manufacturing: Advances in Holonic

Approach, Springer, New York, 2003.

[Den68] Peter J. Denning. The working set model for program behavior. Comm. ACM,

ll(5):323-333, 1968.

[Den70] Peter J. Denning. Virtual memory. ACM Compting Surveys, 2(3): 153-189, 1970.

[Den76] P.J. Denning. The working set model for program behavior. Comm. ACM, 19(5):

285-294, 1976.

[Den05] Peter J. Denning. The locality principle. Comm. ACM, 48(7): 19-24, 2005.

[DK75] Peter J. Denning and Kevin C. Kahn. A study of program locality and lifetime

functions. In Proceedings of the 5th ACM Symp. on Operating System Principles, pages

207-216, 1975.

[DS72] Peter J. Denning and Stuart C. Schwartz. Properties of the working-set model.

Comm. ACM, 15(3): 191-198, 1972.

[DWK01] Dwight Deugo, Michael Weiss, and Elizabeth A. Kendall. Reusable patterns

for agent coordination. In Coordination of Internet Agents: Models, Technologies, and

Applications 2001, pages 347-368, Springer, 2001.

[EAW+02] E. N. Elnozahy, Lorenzo Alvisi, Yi-Min Wang, and David B. Johnson. A

survey of rollback-recovery protocols in message-passing systems. ACM Computing

Surveys, 34(3): 375-408, 2002.

[EJZ92] E. N. Elnozahy, David B. Johnson, and Willy Zwaenepoel. The performance of

consistent checkpointing. In Proceedings of the 11th Symp. on Reliable Distributed

Systems, pages 39-47, 1992.

[EZ94] Elmootazbellah N. Elnozahy and Willy Zwaenepoel. On the use and

implementation of message logging. In FTCS-24: Proceedings of the 24th International

180

Symposium on Fault-Tolerant Computing, pages 298-307, Austin, Texas, 1994.

[FAC+03] Rodrigo C. Fonseca, Virgilio Almeida, Mark Crovella, and Bruno D. Abrahao.

On the intrinsic locality properties of Web reference streams. In INFOCOM 2003:

Proceedings of the 22nd Annual Joint Conference of the IEEE Computer and

Communications, pages 448-458, San Francisco, CA, 2003.

[FIP99] FIPA. FIPA'99 Specification Part 2: Agent Communication Language.

http://www.fipa.org, 1999.

[FIP03] FIPA. FIPA Interaction protocol specifications, http://www.fipa.org, 2003.

[GFB05] Zahia Guessoum, Nora Faci, and Jean-Pierre Briot. Adaptive replication of

large-scale multi-agent systems: towards a fault-tolerant multi-agent platform. ACM

SIGSOFT Software Engineering Notes (SIGSOFT), 30(4): 1-6, 2005.

[GHK+07] Qi Gao, Wei Huang, Matthew J. Koop, and Dhabaleswar K. Panda. Group-

based coordinated checkpointing for MPI: a case study on InfiniBand. In ICPP'07:

Proceedings of the International Conference on Parallel Processing, pages 47, 2007.

[GMM98] Robert H. Guttman, Alexandres G. Moukas, and Pattie Maes. Agent-mediated

electronic commerce: a survey. Knowledge Engineering Review, 13(2):147-159, 1998.

[GS99] Rachid Guerraoui and Andre Schiper. Fault-tolerance by replication in distributed

systems. In Reliable Software Technologies - Ada-Europe'96, LNCS 1088, pages 38-57,

Springer, 1996.

[GSP99] Dhrubajyoti Goswami, Ajit Singh and Bruno R. Preiss. Architectural skeletons:

the re-usable building-blocks for parallel applications. In PDPTA'99: Proceedings of the

1999 International Conference on Parallel and Distributed Processing, Techniques and

Applications, pages 1250-1256, Las Vegas, NV, 1999.

[GSP02] Dhrubajyoti Goswami, Ajit Singh and Bruno R. Preiss. From design patterns to

parallel architectural skeletons. Journal of Parallel and Distributed Computing (JPDC),

181

http://www.fipa.org
http://www.fipa.org

62(4): 669-695, 2002.

[GW03] Dawn G. Gregg and Steven Walczak. E-commerce auction agents and online-

auction dynamics. Electronic Markets (ELECTRONICMARKETS) 13(3), 2003.

[Hag96] Staffan Hagg. A sentinel approach to fault handling in multi-agent systems. In

Proceedings of the 2nd Australian Workshop on Distributed AI, pages 181-195, Cairns,

Australia, 1996.

[HMN+97] Jean-Michel Helary, Achour Mostefaoui, Robert H. B. Netzer, and Michel

Raynal. Preventing useless checkpoints in distributed computations. In Proceedings of

the 16th IEEE Intl. Symp. on Reliable Distributed Systems, pages 183-190, Durham, NC,

USA, 1997.

[HMR97a] Jean-Michel Helary, Achour Mostefaoui and Michel Raynal. Cycle

Prevention in Distributed Checkpointing. In PODS'97: Proceedings of the 1997

International Conference on Principles Of Distributed Systems, pages 309-318, Chantilly,

France, 1997.

[HMR97b]Jean-Michel Helary, Achour Mostefaoui and Michel Raynal. Virtual

precedence in asynchronous systems: concepts and applications. In WDAG'97:

Proceedings of the 11th Workshop on Distributed Algorithms, pages 170-184, 1997.

[HMR99] Jean-Michel Helary, Achour Mostefaoui and Michel Raynal. Consistency

issues in distributed checkpoints. IEEE Trans. Software Eng., 25(2): 274-281, 1999.

[HP03] John L. Hennessy and David A. Patterson. Computer Architecture: A Quantitative

Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, 2003

[HSP05] Mohammad Tanvir Huda, Heinz W. Schmidt, and Ian D. Peake. An agent

oriented proactive fault-tolerant framework for grid computing. In e-Science 2005:

Proceedings of the 1st International Conference on e-Science and Grid Technologies,

pages 304-311, Melbourne, Australia, 2005.

182

[HRV+08] Brahim Hamid, Ansgar Radermacher, Patrick Vanuxeem, Agnes Lanusse, and

Sebastien Gerard. A fault-tolerance framework for distributed component systems. In

SEA A 2008: Proceedings of the 34 th Euromicro Conference on Software Engineering and

Advanced Applications, pages 84-91, Parma, Italy, 2008.

[HWL08] Justin C. Y. Ho, Cho-Li Wang and Francis C.M. Lau. Scalable group-based

checkpoint/restart for large-scale message-passing systems. In IPDPS'08: Proceedings of

the 22nd IEEE International Symposium on Parallel and Distributed Processing, 2008.

[JBOOa] Shudong Jin and Azer Bestavros. Sources and characteristics of Web temporal

locality. In MASCOTS 2000: The IEEE/ACM International Symposium on Modeling,

Analysis and Simulation of Computer and Telecommunication Systems, pages 28-35, San

Francisco, CA, 2000.

[JBOOb] Shudong Jin and Azer Bestavros. Temporal locality in Web request streams:

Sources, characteristics, and caching implications (extended abstract). In Proceedings of

the 2000 ACMSIGMETRICS Conference, pages 110-111, Santa Clara, CA, 2000.

[JKN06] Taichi Jinno, Tokimasa Kamiya, and Motoyasu Nagata. Coordinated

checkpointing using vector timestamp in grid computing. In Proceedings of the 2007

International Conference on Parallel and Distributed Processing Techniques and

Applications, page^710-716, 2006.

[JLM08] Qiangfeng Jiang, Yi Luo and D. Manivannan. An optimistic checkpointing and

selective message logging approach for consistent global checkpoint collection in

distributed systems. Journal of Parallel and Distributed Computing, 68(12): 1575-1589,

2008.

[JR86]Raj Jain and Shawn Routhier. Packet trains - measurements and a new model for

computer network traffic. IEEE Journal of Selected Areas in Communications, SAC-4(6):

986-995, 1986. Reprinted in Amit Bhargava (Ed.). Integrated Broadband Networks.

183

Artech House, Norwood, MA, 1990.

[JZ87] David B. Johnson and Willy Zwaenepoel, Sender-based message logging. In

Digest of Paper: 17th Symp. on Fault-Tolerant Computing, pages 14-19, IEEE Computer

Society, 1987.

[JZ88] David B. Johnson and Willy Zwaenepoel. Recovery in distributed systems using

optimistic message logging and checkpointing. In Proceedings of the 7th Annual ACM

Symp. on Principles of Distributed Computing, pages 171-181, Toronto, ON, Canada,

1988.

[KCL00] Sanjeev Kumar, Philip R. Cohen, and Hector Levesque. The adaptive agent

architecture: achieving fault-tolerance using persistent broker teams. In ICMAS 2000:

Proceedings of the 4th Int'l Conf. on Multiagent Systems, pages 159-166, Boston, 2000.

[KEL+62] Tom Kilburn, David B.G Edwards, Michael J. Lanigan, and Frank H. Sumner.

One level storage system. IRE Trans. Electronic Computers, EC-11(2): 223- 235, 1962.

[Ken98] Elizabeth A. Kendall. Agent roles and aspects. In Proceedings of ECOOP

Workshops, pages 440, LNCS 1543, Springer-Verlag, 1998.

[KenOO] Elizabeth A. Kendall. Agent software engineering with role modeling. In AOSE-

2000: Proceedings of the 1st International Workshop, pages 163-170, Springer-Verlag,

Berlin, Germany, 2000.

[KRD03] Mark Klein, Juan A. Rodriguez-Aguilar, and Chrysanthos Dellarocas. Using

domain-independent exception handling services to enable robust open multi-agent

systems: the case of agent death. Autonomous Agents and Multi-Agent Systems, 7(1-

2): 179-189, 2003.

[KT87] Richard Koo and Sam Toueg. Checkpointing and rollback recovery for

distributed systems. IEEE Trans. Software Eng., 13(1): 23-31, 1987.

[Kum08] Parveen Kumar: A low-cost hybrid coordinated checkpointing protocol for

184

mobile distributed systems. Mobile Information Systems (MIS), 4(1): 13-32, 2008.

[Lam78] Leslie Lamport. Time, clocks and the ordering of events in a distributed system.

Comm. ACM, 21(7): 558-565, 1978.

[LB88] Pei-Jyun Leu and Bharat K. Bhargava. Concurrent robust checkpointing and

recovery in distributed systems. In ICDE '88: Proceedings of the 4th Int 7 Conf. on Data

Engineering, Los Angeles, pages 154-163, Los Angeles, CA, 1988.

[LCK+06] Feifei LI, Ching Chang, George Kollios, and Azer Bestavros. Characterizing

and exploiting reference locality in data stream applications. In ICDE'06: Proceedings of

the 22ndInternational Conference on Data Engineering, pages 81-92, 2006.

[LiuOl] Jiming Liu. Autonomous Agents and Multi-Agent Systems: An Introduction,

World Scientific, Singapore, 2001.

[LWD06] Hon F. Li, Zunce Wei, and Dhrubajyoti Goswami. Quasi-atomic recovery for

distributed agents. Parallel Computing, 32(10): 733-758, 2006.

[Mas77] Takashi Masuda. Effect of program localities on memory management strategies.

ACMSIGOPS Operating Systems Review, 11(5): 117-124, 1977.

[Mat71] Richard L. Mattson. Evaluation of multilevel memories. IEEE Trans, on

Magnetics, 7(4): 814-819, 1971.

[MB76] A. Wayne Madison and Alan P. Bates. Characteristics of program localities.

Comm ACM, 19(5):285--294, 1976.

[MBS03] Olivier Marin, Marin Bertier, and Pierre Sens. DARX - a framework for the

fault-tolerant support of agent software. In ISSRE 2003: Proceedings of the 14th

International Symposium on Software Reliability Engineering, pages 406-418, 2003.

[Mei08] Amnon Meisels. Distributed search by constrained agents: algorithms,

performance, communication. Springer-Verlag, London, UK, 2008.

[MEW00] Anirban Mahanti, Derek Eager, and Carey Williamson. Temporal locality and

185

its impact on Web proxy cache performance. Performance Evaluation, Special Issue on

Performance Modelling, 42(2-3): 187-203, 2000.

[MGS+70] Richard L. Mattson, Jan Gecsei, Donald R. Slutz, and Irving L. Traiger.

Evaluation techniques for storage hierarchies. IBM Systems Journal, 9(2):78—117, 1970.

[MJY+05] D. Manivannan, Qiangfeng Jiang, Jianchang Yang, Karl E. Persson, Mukesh

Singhal: An Asynchronous Recovery Algorithm Based on a Staggered Quasi-

Synchronous Checkpointing Algorithm. In 1WDC 2005: Proceedings of the 7th

International Workshop on Distributed Computing, pages 117-128, LNCS 3742, 2005.

[MLY06] Romeo Mark A. Mateo, Jaewan Lee, and Hyunho Yang. Optimization of

location management in the distributed location-based services using collaborative agents.

In ICCSA 2006: Proceedings of International Conference on Computational Science and

Its Applications, pages 178-187, Glasgow, UK, 2006.

[MM05] Partha S. Mandal and Krishnendu Mukhopadhyaya. Performance analysis of

different checkpointing and recovery schemes using stochasticmodel. Journal of Parallel

and Distributed Computing, 66(1): 99 - 107, 2006.

[MS96] D. Manivannan and Mukesh Singhal. A low-overhead recovery technique using

quasi-synchronous checkpointing. In ICDCS'96: Proceedings of the 16th International

Conference on Distributed Computing Systems, pages 100-107, Hong Kong, 1996.

[MSA+08] Edleno Silva de Moura, Celia Francisca dos Santos, Bruno Dos Santos de

Araujo, Altigran Soares da Silva, Pavel Calado, and Mario A. Nascimento. Locality-

based pruning methods for web search. ACM Trans. Inf. Syst. (TOIS), 26(2), 2008.

[MSM08] John Mehnert-Spahn, Michael Schottner, and Christine Morin. Checkpointing

process groups in a grid environment. In PDCAT'08 .Proceedings of the 9th International

Conference on Parallel and Distributed Computing, Applications and Technologies,

pages 243-251,2008.

186

[NF96] Nuno Neves and W. Kent Fuchs. Using time to improve the performance of

coordinated checkpointing. In IPDS'96: Proceedings of the 2nd International Computer

Performance and Dependability Symposium, pages 282, 1996.

[NF98] Nuno Neves and W. Kent Fuchs. RENEW: a tool for fast and efficient

implementation of checkpoint protocols. In Proceedings of the 28th IEEE Fault-Tolerant

Computing Symposium, pages 58-67, 1998.

[NX95] Robert H.B. Netzer and Jian Xu. Necessary and sufficient conditions for

consistent global snapshots. IEEE Trans. Parallel and Distributed Systems, 6(2): 165-169,

1995.

[OMG03] OMG. UML 2.0 Superstructure Specification. OMG document ptc/03-08-02,

OMG, Framingham, MA, 2003.

[OPBOO] James Odell, H. Van Dyke Paranak, and Bernhard Bauer. Extending UML for

agents. In AOIS Workshop at AAAI 2000: Proc. of the Agent-Oriented Information

Systems Workshop at the 17th National conference on Artificial Intelligence, pages 3-17,

Austin, TX, USA, 2000.

[PBC01] H. Van Dyke Parunak, Albert D. Baker, and Steven J. Clark. AARIA agent

architecture: from manufacturing requirements to agent-based system design. Integr.

Computer-Aid. Eng., 8(1): 45-58, 2001.

[PBK+95] James S. Plank, Micah Beck, Gerry Kingsley, Kai Li. Libckpt: Transparent

checkpointing under Unix. In Proceedings ofUsenix Winter 1995 Technical Conference,

pages 213-223, New Orleans, LA, 1995.

[PGB01] Hamadri S. Paul, Arobinda Gupta, and R. Badrinath. Evaluation of Different

Classes of Checkpoint and Recovery Protocols with dPSIM. In Proceedings of the

International Conference on Information Technology, pages 315 - 320, 2001.

[Pla93] James S. Plank. Efficient checkpointing on MIMD Architectures, Ph.D. Thesis,

187

Princeton University, 1993.

[Pla96] James S. Plank. Improving the performance of coordinated checkpointers on

networks of workstations using RAID techniques. In Proceedings of the 15th Symposium

on Reliable Distributed Systems, pages 76 - 85, 1996.

[Pla97] James S. Plank. An overview of checkpointing in uniprocessor and distributed

systems, focusing on implementation and performance. Technical Report of University of

Tennessee, UT-CS-97-372, 1997.

[PPGOO] Holger Pals, Stefan Petri, and Claus Grewe. FANTOMAS: fault tolerance for

mobile agents in clusters. In Proceedings of the 15th IPDPS 2000 Workshops on Parallel

and Distributed Processing, pages 1236-1247, Cancun, Mexico, LNCS 1800, Springer-

Verlag, 2000.

[Ran75] Brian Randell. System structure for software fault tolerance. IEEE Trans.

Software Eng., 1(2): 220-232,1975.

[RAV99] Sriram Rao, Lorenzo Alvisi, and Harrick M. Vin. Egida: an extensible toolkit for

low-overhead fault-tolerance. In Proceedings of the 29th International Symposium on

Fault-Tolerant Computing, pages 48, 1999.

[RUI97] B. Ramamurthy, S.J. Upadhyaya, and R.K. Iyer. An ooject-oriented testbed for

the evaluation of checkpointing and recovery systems. In FTCS '97: Proceedings of the

27th International Symposium on Fault-Tolerant Computing, pages 194, 1997.

[SDP+96] Katia Sycara, Keith Decker, Anandeep Pannu, Mike Williamson, and Dajun

Zeng. Distributed intelligent agents. IEEE Expert, 11(6): 36-46, 1996.

[SE05] Yunus Emre Sel9uk and Nadia Erdogan. A role model for description of agent

behavior and coordination. In ESAW 2005: Proceedings of the 6th International

Workshop on Engineering Societies in the Agents World VI, pages 29-48, Kusadasi,

Turkey, LNCS 3963, Springer, 2005.

188

[SEA+07] Iman Saleh, Mohamed Eltoweissy, Adnan Agbaria, and Hesham El-Sayed. A

fault tolerance management framework for wireless sensor networks. Journal of

Communications, 2(4):38-48, 2007.

[Sen97] Pierre Sens. Performance evaluation of fault tolerance for parallel applications in

networked environments. In ICPP'97: Proceedings of the 1997 International Conference

on Parallel Processing, pages 334,1997.

[SG06] Tiemi C. Sakata and Islene C. Garcia. Non-blocking synchronous checkpointing

based on rollback-dependency trackability. In SRDS'06: Proceedings of the 25th IEEE

Symposium on Reliable Distributed Systems, pages 411-420, 2006.

[SGP+05] Rodrigo Schmidt, Islene C. Garcia, Fernando Pedone, and Luiz Eduardo

Buzato. Optimal asynchronous garbage collection for RDT checkpointing protocols. In

ICDCS'05: Proceedings of the 25th International Conference on Distributed Computing

Systems, pages 167-176,2005.

[SL09] Yoav Shoham and Kevin Leyton-Brown. Multiagent systems: algorithmic, game-

theoretic, and logical foundations. Cambridge Univeristy Press, Cambridge, UK, 2009.

[SS83] Richard D. Schlichting and Fred B. Schneider. Fail-stop processors: an approach

to designing fault-tolerant computing systems. ACM Trans. Computer Systems, 1(3):

222—238,1983.

[SS99] Luis M. Silva and Joao G. Silva. The performance of coordinated and independent

checkpointing. In IPPS/SPDP '99: Proceedings of the 13th International and 10th

Symposium on Parallel and Distributed Processing, pages 280 - 284, 1999.

[SSS+99] Louis M. Silva, Paulo Simoes, Guilherme Soares, Paulo Martins, Victor Batista,

Carlos Renato, Leonor Almeida, and Norbert Stohr. JAMES: a platform of mobile agents

for the management of telecommunication networks. In IATA'99: Proceedings of the 3rd

International Workshop on Intelligent Agents for Telecommunication Applications, pages

189

76-95, LNCS 1699, Springer-Verlag, 1999.

[SY85] Robert E. Strom and Shaula A. Yemini. Optimistic recovery in distributed

systems. ACM Trans. Computer Systems, 3(3): 204-226,1985.

[THT98] Katsuya Tanaka, Hiroaki Higaki, and Makoto Takizawa. Object-based

checkpoints in distributed systems. J. of Computer Systems Science and Engineering,

13(3): 125-131, 1998.

[TM05] Tongchit Tantikul and D. Manivannan: A communication-induced checkpointing

and asynchronous recovery protocol for mobile computing systems. In Proceedings of the

6th International Conference on Parallel and Distributed Computing, Applications and

Technologies, pages 70-74, 2005.

[TS84] Yuval Tamir and Carlo H. Sequin. Error recovery in multicomputers using global

checkpoints. In ICPP'84: Proceedings of the 13th Int'l Conf. on Parallel Processing,

pages 32-41, Bellaire, MI, 1984.

[Tsa03] Jichiang Tsai: On properties of RDT communication-induced checkpointing

protocols. IEEE Trans. ParallelDistrib. Syst. (TPDS), 14(8):755-764, 2003.

[Vai99] Nitin H. Vaidya. Staggered consistent checkpointing, IEEE Trans. Parallel and

Distributed Systems, 10(7): 694-702, 1999.

[Van05] Sarut Vanichpun. Comparing Strength of Locality of Reference: Popularity,

Temporal Correlations, and Some Folk Theorems for the Miss Rates and Outputs of

Caches. Ph.D. Thesis, University of Maryland, 2005.

[Wan93] Yi-Min Wang. Space Reclamation for Uncoordinated Checkpointing in

Message-Passing Systems, Ph.D. Thesis, University of Illinois, 1993.

[Weg90]Peter Wegner. Concepts and paradigms of object-oriented programming. OOPS

Messenger, 1(1)7-87, 1990.

[WGP03] Thomas Wagner, Valerie Guralnik, and John Phelps. T ^ M S agents: enabling

190

dynamic distributed supply chain management. Electronic Commerce Research and

Applications (ECRA), 2(2): 114-132, 2003.

[WLD+04] Lin Wang, Hon F. Li, Dhrubajyoti Goswami, and Zunce Wei. A fault-tolerant

multi-agent development framework. In ISPA '04: Proceedings of the 2nd Int 7 Symp. on

Parallel and Distributed Processing and Applications, pages 126-135, Hong Kong,

LNCS 3358, Springer-Verlag, 2004.

[WLG04] Zuiice Wei, Hon F. Li, and Dhrubajyoti Goswami. Composable skeletons for

parallel programming. In PDPTA '04: Proceedings of the 2004 International Conference

on Parallel and Distributed Processing Techniques and Applications, pages 1256-1261,

Las Vegas, NV, 2004.

[WLG05] Zunce Wei, Hon F. Li, and Dhrubajyoti Goswami. Cloning-based checkpoint

for localized recovery. In I-SPAN 2005: Proceedings of the 8th Int 7 Symp. on Parallel

Architectures, Algorithms and Networks, 174-181, Las Vegas, NV, 2005.

[WLG06] Zunce Wei, Hon F. Li, and Dhrubajyoti Goswami. A Locality-Driven Atomic

Group Checkpoint Protocol. In PDCAT 2006: Proceedings of the 7th International

Conference on Parallel and Distributed Computing, Applications and Technologies,

pages 558-564, Taipei, Taiwan, 2006.

[XRR+95] Jie Xu, Brian Randell, Alexander B. Romanovsky, Cecilia M. F. Rubira,

Robert J. Stroud, and Zhixue Wu. Fault tolerance in concurrent object-oriented software

through coordinated error recovery. In FTCS'95: Proceedings of the 25th Symposium on

Fault-Tolerant Computing, pages 499-508, Pasadena, CA, 1995.

[ZHK06] Gengbin Zheng, Chao Huang, Laxmikant V. Kale: Performance evaluation of

automatic checkpoint-based fault tolerance for AMPI and Charm-H-. Operating Systems

Review (SIGOPS) 40(2):90-99, 2006.

191

