46,241 research outputs found

    DualSMC: Tunneling Differentiable Filtering and Planning under Continuous POMDPs

    Full text link
    A major difficulty of solving continuous POMDPs is to infer the multi-modal distribution of the unobserved true states and to make the planning algorithm dependent on the perceived uncertainty. We cast POMDP filtering and planning problems as two closely related Sequential Monte Carlo (SMC) processes, one over the real states and the other over the future optimal trajectories, and combine the merits of these two parts in a new model named the DualSMC network. In particular, we first introduce an adversarial particle filter that leverages the adversarial relationship between its internal components. Based on the filtering results, we then propose a planning algorithm that extends the previous SMC planning approach [Piche et al., 2018] to continuous POMDPs with an uncertainty-dependent policy. Crucially, not only can DualSMC handle complex observations such as image input but also it remains highly interpretable. It is shown to be effective in three continuous POMDP domains: the floor positioning domain, the 3D light-dark navigation domain, and a modified Reacher domain.Comment: IJCAI 202

    An Adversarial Interpretation of Information-Theoretic Bounded Rationality

    Full text link
    Recently, there has been a growing interest in modeling planning with information constraints. Accordingly, an agent maximizes a regularized expected utility known as the free energy, where the regularizer is given by the information divergence from a prior to a posterior policy. While this approach can be justified in various ways, including from statistical mechanics and information theory, it is still unclear how it relates to decision-making against adversarial environments. This connection has previously been suggested in work relating the free energy to risk-sensitive control and to extensive form games. Here, we show that a single-agent free energy optimization is equivalent to a game between the agent and an imaginary adversary. The adversary can, by paying an exponential penalty, generate costs that diminish the decision maker's payoffs. It turns out that the optimal strategy of the adversary consists in choosing costs so as to render the decision maker indifferent among its choices, which is a definining property of a Nash equilibrium, thus tightening the connection between free energy optimization and game theory.Comment: 7 pages, 4 figures. Proceedings of AAAI-1

    Multi-Agent Planning with Planning Graph

    Get PDF
    In this paper, we consider planning for multi-agents situations in STRIPS-like domains with planning graph. Three possible relationships between agents' goals are considered in order to evaluate plans: the agents may be collaborative, adversarial or indifferent entities. We propose algorithms to deal with each situation. The collaborative situations can be easily dealt with the original Graphplan algorithm by redefining the domain in a proper way. Forward-chaining and backward chaining algorithms are discussed to find infallible plans in adversarial situations. In case such plans cannot be found, the agent can still attempt to find a plan for achieving some part of the goals. A forward-chaining algorithm is also proposed to find plans for agents with independent goals

    Efficient Supervision for Robot Learning via Imitation, Simulation, and Adaptation

    Full text link
    Recent successes in machine learning have led to a shift in the design of autonomous systems, improving performance on existing tasks and rendering new applications possible. Data-focused approaches gain relevance across diverse, intricate applications when developing data collection and curation pipelines becomes more effective than manual behaviour design. The following work aims at increasing the efficiency of this pipeline in two principal ways: by utilising more powerful sources of informative data and by extracting additional information from existing data. In particular, we target three orthogonal fronts: imitation learning, domain adaptation, and transfer from simulation.Comment: Dissertation Summar
    • …
    corecore