104 research outputs found

    Parareal in time intermediate targets methods for optimal control problem

    Full text link
    In this paper, we present a method that enables solving in parallel the Euler-Lagrange system associated with the optimal control of a parabolic equation. Our approach is based on an iterative update of a sequence of intermediate targets that gives rise to independent sub-problems that can be solved in parallel. This method can be coupled with the parareal in time algorithm. Numerical experiments show the efficiency of our method.Comment: 14 page

    Power-to-Syngas: A Parareal Optimal Control Approach

    Get PDF
    A chemical plant layout for the production of syngas from renewable power, H2O and biogas, is presented to ensure a steady productivity of syngas with a constant H2-to-CO ratio under time-dependent electricity provision. An electrolyzer supplies H2 to the reverse water-gas shift reactor. The system compensates for a drop in electricity supply by gradually operating a tri-reforming reactor, fed with pure O2 directly from the electrolyzer or from an intermediate generic buffering device. After the introduction of modeling assumptions and governing equations, suitable reactor parameters are identified. Finally, two optimal control problems are investigated, where computationally expensive model evaluations are lifted viaparareal and necessary objective derivatives are calculated via the continuous adjoint method. For the first time, modeling, simulation, and optimal control are applied to a combination of the reverse water-gas shift and tri-reforming reactor, exploring a promising pathway in the conversion of renewable power into chemicals

    Time-parallel iterative solvers for parabolic evolution equations

    Get PDF
    We present original time-parallel algorithms for the solution of the implicit Euler discretization of general linear parabolic evolution equations with time-dependent self-adjoint spatial operators. Motivated by the inf-sup theory of parabolic problems, we show that the standard nonsymmetric time-global system can be equivalently reformulated as an original symmetric saddle-point system that remains inf-sup stable with respect to the same natural parabolic norms. We then propose and analyse an efficient and readily implementable parallel-in-time preconditioner to be used with an inexact Uzawa method. The proposed preconditioner is non-intrusive and easy to implement in practice, and also features the key theoretical advantages of robust spectral bounds, leading to convergence rates that are independent of the number of time-steps, final time, or spatial mesh sizes, and also a theoretical parallel complexity that grows only logarithmically with respect to the number of time-steps. Numerical experiments with large-scale parallel computations show the effectiveness of the method, along with its good weak and strong scaling properties

    Towards scalable parallel-in-time turbulent flow simulations

    Get PDF
    We present a reformulation of unsteady turbulent flow simulations. The initial condition is relaxed and information is allowed to propagate both forward and backward in time. Simulations of chaotic dynamical systems with this reformulation can be proven to be well-conditioned time domain boundary value problems. The reformulation can enable scalable parallel-in-time simulation of turbulent flows.United States. Air Force Office of Scientific Research. Small Business Technology Transfer Program (Contract FA9550-12-C-0065
    • …
    corecore