5 research outputs found

    Efficient similarity search in high-dimensional data spaces

    Get PDF
    Similarity search in high-dimensional data spaces is a popular paradigm for many modern database applications, such as content based image retrieval, time series analysis in financial and marketing databases, and data mining. Objects are represented as high-dimensional points or vectors based on their important features. Object similarity is then measured by the distance between feature vectors and similarity search is implemented via range queries or k-Nearest Neighbor (k-NN) queries. Implementing k-NN queries via a sequential scan of large tables of feature vectors is computationally expensive. Building multi-dimensional indexes on the feature vectors for k-NN search also tends to be unsatisfactory when the dimensionality is high. This is due to the poor index performance caused by the dimensionality curse. Dimensionality reduction using the Singular Value Decomposition method is the approach adopted in this study to deal with high-dimensional data. Noting that for many real-world datasets, data distribution tends to be heterogeneous, dimensionality reduction on the entire dataset may cause a significant loss of information. More efficient representation is sought by clustering the data into homogeneous subsets of points, and applying dimensionality reduction to each cluster respectively, i.e., utilizing local rather than global dimensionality reduction. The thesis deals with the improvement of the efficiency of query processing associated with local dimensionality reduction methods, such as the Clustering and Singular Value Decomposition (CSVD) and the Local Dimensionality Reduction (LDR) methods. Variations in the implementation of CSVD are considered and the two methods are compared from the viewpoint of the compression ratio, CPU time, and retrieval efficiency. An exact k-NN algorithm is presented for local dimensionality reduction methods by extending an existing multi-step k-NN search algorithm, which is designed for global dimensionality reduction. Experimental results show that the new method requires less CPU time than the approximate method proposed original for CSVD at a comparable level of accuracy. Optimal subspace dimensionality reduction has the intent of minimizing total query cost. The problem is complicated in that each cluster can retain a different number of dimensions. A hybrid method is presented, combining the best features of the CSVD and LDR methods, to find optimal subspace dimensionalities for clusters generated by local dimensionality reduction methods. The experiments show that the proposed method works well for both real-world datasets and synthetic datasets

    An adaptive and efficient dimensionality reduction algorithm for high-dimensional indexing

    No full text
    The notorious iodimensionality curseln is a well-known phenomenon for any multi-dimensional indexes attempting to scale up to high dimensions. One well known approach to overcoming degradation in performance with respect to increasing dimensions is to reduce the dimensionality of the original dataset before constructing the index. However, identifying the correlation among the dimensions and effectively reducing them is a challenging task. In this paper, we present an adaptive Multi-level Mahalanobis-based Dimensionality Reduction (MMDR) technique for high-dimensional indexing. Our MMDR technique has three notable features compared to existing methods. First, it discovers elliptical clusters using only the low-dimensional subspaces. Second, data points in the different axis systems are indexed using a single B+-tree. Third, our technique is highly scalable in terms of data size and dimensionality. An extensive performance study using both real and synthetic datasets was conducted, and the results show that our technique not only achieves higher precision, but also enables queries to be processed efficiently

    Data and knowledge engineering for medical image and sensor data

    Get PDF
    corecore