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“Grant me the serenity to accept the things I cannot change,
Courage to change the things I can,
And wisdom to know the difference.”
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Zusammenfassung

Geräte zur medizinischen Bildgebung sind mittlerweile zu einem festen Be-
standteil medizinischer Einrichtungen in industrialisierten Ländern geworden,
so dass die medizinische Bildgebung und deren Möglichkeiten aus dem Ge-
sundheitswesen nicht mehr wegzudenken sind. Die gewonnenen Bilddaten
müssen jedoch wie alle anderen medizinische Daten auch für eine vergleichbar
lange Zeit gespeichert und archiviert werden. Eines der größten Probleme,
mit denen sich derartige Archive beschäftigen stellt die Durchsuchbarkeit
des Datenbestandes dar, da sich derzeitige Suchoptionen oft auf den Inhalt
digitaler und digitalisierter Berichte und Annotationen beschränkt.

Der erste Teil dieser Arbeit beschäftigt sich mit einem Problem aus
dem Arbeitsablauf von Radiologen, die mit Computer Tomographie (CT)
Daten arbeiten. In diesem Teil wird ein neues Verfahren vorgestellt, das
Query-By-Example Anfragen in CT Volumendaten mit einem Minimum
an Anfrageinformation realisiert. Im weiteren Verlauf wird ein Verfahren
zur automatischen Detektion der Wirbelsäule vorgestellt. Die Ergebnisse
dieses Verfahrens können zum Beispiel zur Initialisierung semi-automatischer
Verfahren verwendet werden, die derzeit manuell initialisiert werden müssen.

Der zweite Teil dieser Arbeit beschäftigt sich mit der Analyse medizinischer
Sensordaten. Die Bedeutung körperlicher Aktivität im Bereich medizinischer
Vorsorge als auch im Bereich der Therapie ist unumstritten. Es ist jedoch
nicht ganz einfach, die körperliche Aktivität eines Patienten zu messen, sobald
er sich nicht mehr in einem kontrollierten Umfeld (z.B. einer Reha-Klinik)
aufhält, sondern zu Beispiel zuhause. Derzeitige Lösungen setzen zum Teil
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voraus, dass der Patient detailliert über seine Aktivitäten Buch führt, was für
den Patienten weder bequem noch sonderlich objektiv ist. In diesem Teil der
vorliegenden Arbeit wird ein neuartiges Verfahren zur Analyse und Klassifika-
tion von Daten vorgestellt, die von einem miniaturisiertem 3D Accelerometer
aufgenommen wurden. Des Weiteren wird eine Software vorgestellt, mit Hilfe
derer sowohl Algorithmen erstellt werden können, die jedoch auch als Basis
für die Benutzeroberfläche der entsprechenden Anwendung für Ärzte und Pa-
tienten verwendet werden kann um die Daten der körperlichen Aktivität, die
der Sensor aufgenommen hat, entsprechend aufzubereiten und darzustellen.

Insbesondere im Bereich der computergestützten (medizinischen) Bild-
gebung ist es üblich, dass sog. Feature Vektoren benutzt werden um Bilder
oder Teile von Bildern zu beschreiben. Dasselbe gilt für die Analyse der
Sensordaten im Anwendungsbereich der körperlicher Aktivität und deren
Erkennung und Klassifikation. Um Bildinhalte oder Aktivitäten entsprechend
genau zu beschreiben sind diese Feature Vektoren meist hochdimensional,
was spätestens dann Probleme verursacht, wenn diese Vektoren zur effizi-
enten Suche in Datenbanksystemen verwendet werden sollen. Insbesondere
nächste-Nachbarn-Anfragen können in diesem Fall oft nicht effizient durch-
geführt werden. Jedoch stellt genau diese Art Anfragetyp einen essentiellen
Schritt in den vorgestellten Verfahren dar. Dieses Problem wird im dritten
Teil dieser Arbeit beleuchtet. Dort wird zunächst ein generalisiertes Ver-
fahren zur nächste-Nachbarn-Suche in hochdimensionalen Daten vorgestellt.
Im Gegensatz zu konventionellen Datenbanksystemen werden in diesem Fall
die Daten nicht zeilenweise sondern spaltenweise organisiert. Diese Methode
arbeitet jedoch nur effektiv, wenn die Dimensionalität der Features groß
genug ist. In Fällen wie der Aktivitätserkennung ist die Dimensionalität der
entsprechenden Vektoren zu niedrig für diese Methode, jedoch immer noch zu
hoch für klassische Indexstrukturen. Dieses Problem wird im letzten Teil der
Arbeit beleuchtet, bei dem die Auswirkung neuer Hardware auf die Effizienz
untersucht wird.
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Abstract

Several modalities of medical imaging have become standard equipment in
modern health care facilities of industrialized countries so that it is unimagin-
able to do without medical imaging in current and future health care. Like
other medical data as well, the produced imagery data has to be stored in
archives for a comparatively long time. One of the largest problems is the
searchability of such data archives. Current search options are often restricted
to a plain text search that can only search within digital (or digitalized)
reports and possibly also annotations.

The first part of this thesis focuses on a problem stated by radiologists
that are working on Computer Tomography (CT) data. In that part, a new
technique is presented that allows a query-by-example search in CT volume
scans that requires only a minimal set of input data to obtain a very accurate
result. The second part of the medical imaging topic in this thesis covers the
automatic detection of the vertebra within a single CT image. The results of
this method can be used as an initialization for several other techniques that
are yet only semi-automatic as they often need a manual initialization.

The second part of the thesis is concerned with the analysis of medical
sensor data. This work was motivated by the importance of physical activity
to modern health care. The importance of physical activity in medical
prevention and in therapy is non-controversial. However it is comparatively
hard to monitor the physical activity of a patient if he is not in a controlled
environment like a hospital. Currently this can be accomplished if the patient
is writing a detailed log, yet this is neither convenient nor objective. In this
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part of the thesis, a new algorithm is presented that analyses the accelerometer
data of a miniaturized sensor in order to classify the activity that has been
performed. Furthermore a software is presented which is used for building
the algorithms as well as the GUI which should be used by attending doctors
as well as patients to monitor the physical activity.

Especially in the field of computer vision and imaging, the use of feature
vectors is common to describe an image or just parts of an image. Same
can be said in the case of activity classification where feature vectors are
also used to describe segments in the raw data. In order to describe an
image content or activity precisely enough for the according use case, such
feature vectors usually have a dimensionality that causes severe problems
if they should not just be stored but also effectively retrieved from a data
base. Especially nearest neighbor queries can often not be executed in an
efficient way. However such queries are essential in the shown algorithms.
This motivates the third part of the thesis. First a generalized method for
nearest neighbor search in very high dimensional data is proposed. In contrast
to common data base systems, this system employs a vertical decomposition
of the data. However this method only performs if the dimensionality is
large enough, like for example in the medical imaging task. In cases like the
activity recognition, the dimensionality of the feature vectors is a too low for
this technique but yet too large for common index structures. This issue is
addressed in the second half of this part where the impact of new hardware
on classical index structures is evaluated.
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Chapter 1

Introduction

1.1 Medical Imaging

Medical Imaging is one of the most important features currently used in the
field of medical diagnosis. Imaging thereby comprised a very large field of all
kinds of techniques that can create an image representation of the body, parts
of the body, the body surface and of course and probably most important the
inside of the body. The methods that are used in order to obtain the data
used to create such images includes several different recording techniques like
Ultra sound, magnetic fields (MRI/MRT) and also electro magnetic radiation
like infra red and X-ray. The great advantage of the mentioned techniques is
that they are working non invasive with very few risk compared to invasive
methods and very fast - especially if little or no preparation of the patient is
required.

With the growing popularity of diagnosis relying on medical imaging, the
need for better post processing of the image data increased as well. Post
processing the data is not only used to enhance the quality of the image which
is displayed to the clinician. Post processing also includes techniques to derive
enhanced information from the raw data. This can include the automatic
detection of spine deformation, the extraction of blood vessels or even 4d
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models of a beating heart in order to plan surgeries. Another advantage of
such methods is the possibility to extract information which are not noted
explicitly in the according radiological report.

1.2 Sensor Data

Besides Medical Imaging, data from sensors plays a big role in current and
future science and medicine. The term sensors in this context is very generic
and can comprise all kind of devices that can be used to obtain (and possibly
also store) certain measurements in its environment. Such sensors can for
example be devices to measure the temperature of the air, the skin, the
respiration or some kind of activity. Parts of this thesis are dealing with the
recognition and classification of activity in medical use cases. In such cases,
the sensors may be operated in a controlled environment for example when a
patient is doing a special training during a rehabilitation. Another application
is the long term observation of a patient where the patient is carrying the
sensor in 24/7 mode in an uncontrolled environment. Such observation is
desired if the time spent in a rehabilitation clinic should be shortened but it
should still be measurable that the patient is continuing to perform a certain
level of activity. Other cases could be to detect sudden decreases of activity
which could indicate a threat to the patient’s health status like in the case of
patients suffering of COPD (Chronic Obstructive Pulmonary Disease).

In such cases, the sensor hardware is facing several restrictions and re-
quirements: The sensor needs to be as small as possible so that the patient’s
quality of life is not reduced or affected in a way that his behavior is affected.
It also needs to be unremarkable so that the patient is not stigmatized which
would also lower the acceptance of the device.

After recording the data, methods and algorithms are required that analyze
the data that is recorded by the sensor. Depending on the recording rate of
the sensors, a huge amounts of data can be created that need to be analyzed
in order to extract important facts from the data. Also, this data needs to be
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aggregated and prepared before being displayed to the user.

1.3 Indexing

Indexing and similarity search are very related topics. Indexing aims at
creating approximations and aggregates of entities in order to improve retrieval
in files and data bases. The aim of similarity search is to find entities that
are similar to one or more query objects. To accomplish this, it is common to
apply a certain kind of distance function on two entities in order to measure
their distance or - vice versa - their similarity. In the trivial case, the distance
between the query entity and all other entities in the data base is computed
and the entities with the smallest distance are returned as the result set. The
computational overhead in that case is O(n) with n entities being stored in
the data base.

The use of indexing in such a case aims at reducing the amount of data
that needs to be taken into consideration for such a query. This is usually
accomplished either by certain hasing functions or by approximating distance
values, so that groups of entities can be pruned from the search space without
calculating their exact distance to the query entity.

While there exist well known solutions for low-dimensional spaces, it is
common sense that similarity search in high-dimensional spaces is inherently
difficult. Yet, the features that are extracted from (medical) images and sensor
data usually have high and very high dimensions. Especially image features
often have a dimensionality of more than 50 or more than 100 dimensions
which is far beyond the dimensionality where classical index structures can
perform well.
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Chapter 2

Outline of the Thesis

The following content of this thesis is organized as follows:

Part II deals with problems in the area of medical imaging. Chapter 3
provides an introduction to medical imaging technologies and their history.
Chapter 4 presents some works for the localization of single CT slices in CT
Volume scans. Chapter 5 then presents an approach to detect the vertebra
on a single CT scan.

Part III describes the work that has been done on sensor data and the
according analysis. Chapter 6 introduces the topic about sensor data and
activity recognition. Chapter 7 describes a method for the detection and
classification of activity data obtained from medical sensors. Chapter 8
presents a generic application for data mining that was created to simplify
the development of algorithms and prototypes in this context.

Part IV deals with the problems of indexing and similarity search in
high dimensional data. Chapter 9 introduces the topic briefly. Chapter 10
presents an improved approach to index very high dimensional data in order
to improve similarity search. In Chapter 11 the impact of Solid State Disks
(SSDs) compared to classical Hard Disk Drives (HDDs) is evaluated as the
access paradigms that have been driving and restricting the development of
index structures in the past decades are very different in the case of SSDs.
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Part V summarizes and discusses the major contributions of the thesis in
Chapter 12, followed by Chapter 13 where ideas for possible future research
are listed.
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Part II

Medical Imaging
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Chapter 3

Introduction

Medical imaging comprises a large variety of different techniques that have
been developed in the past decades and centuries with all different kinds of
application scenarios. The technologies in the imaging area can roughly be
categorized in techniques using sonic waves (ultra sound), magnetic fields
(MRI/MRT) and electromagnetic radiation (X-ray, CT, IR). The following
chapter will give a brief introduction to each of these techniques with a focus
on techniques based on electromagnetic radiation as this will turn out to be
the main subject of the thesis.

Ultra Sound The term ultrasound refers to sound waves with a frequency
which is greater than what an average human hearing can recognize. Depend-
ing on the person, this limit varies. Yet the frequency of 20 kHz is commonly
regarded as the upper limit of the human hearing[113, 91, 41]. In medical
(ultra) sonography, ultra sound waves with a frequency of about 1–15MHz
are used to visualize internal body structures, like muscles, organs and fetuses
in the womb[62]. Medical sonography was first published in 1942 by the
Austrian neurologist Karl Theo Dussik [38] and has since then gained very
much interest. Medical sonography devices usually consist of a sound emitter
that emits directional sound waves and a receiver/microphone that records
the echo. By taking into account the possible effects of reflection, scatter
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and absorption, an image can be reconstructed from the information which is
recorded from the receiver/microphone. A big advantage of sonography is the
small size of the devices, the small cost impact and the fact that the diagnosed
patient is not exposed to any radiation compared to X-ray, so that the patient
is not posed to any risks. Especially the last factor is very important in
the field of breast mammography and prenatal diagnostics. During the past
decade, 4D reconstruction techniques were developed, so that for example
limb movements can be visualized a week earlier than in simple 2D in case of
prenatal diagnostics [87].

MRT/MRI Another well known medical imaging technique is magnetic
resonance tomography (MRT) which is also known as magnetic resonance
imaging (MRI). Compared to other medical imaging techniques, MRI is
comparatively new as it was first presented in 1973 by the American radiolo-
gist Paul Christian Lauterbur. MRI is based on very strong magnetic fields
and radio frequencies. During an MRI, the body is placed inside a strong
magnetic field that aligns the hydrogen molecules inside the body. Then,
a radio frequency is introduced on the body. Afterwards, an emitted reso-
nance frequency can be measured by surrounding sensors. Thereby, different
relaxation times of different nuclei (usually protons of hydrogen atoms) in
the body are measured to reconstruct a 2D or 3D information about the
magnetic gradient distribution in the body. The fact that different kinds
of tissues in the body result in different relaxation times in the according
body region is used for defining the contrast in the image. While the first
MRT devices were only able to visualize 2D slices through the scanned body
part, modern techniques now even provide 4D visualizations of the patient.
In the past decades, MRI has become a very important imaging technique
to visualize tendons and ligaments. One of the major advantages of MRT
compared to CT is that MRT does not utilize any ionizing radiation. 30 years
later in 2003, Paul C. Lauterbur and Sir Peter Mansfield received the Nobel
Price in Physiology and Medicine “for their discoveries concerning magnetic
resonance imaging” [102].
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EM Spectra. From γ-rays to IR Maybe the most obvious application of
medical imaging is the analysis of photographs that can be taken with regular
cameras which are recording the visible part of the electromagnetic spectrum
covering the range of about 380 to 780 nm. In dermatology for example this
technique is applied in order to detect and classify skin cancer [145, 148].
Sadeghi et al [119] for example perform a graph based pigment network
detection method in order to detect structures of the pigment network. The
results are used to classify the presence or absence of malignant melanoma,
an aggressive type of skin cancer which causes about 75% of deaths related
to skin cancer [70].

Infrared, Thermography Next to the visible spectrum, the infrared spec-
tra covers the spectral range from 780 nm to 1mm. The analysis of images
taken in this spectrum is called infrared or thermal imaging as the temperature
distribution of objects can also be measured in this spectral range. In medical
imaging, this spectrum is used to monitor the temperature distribution of
the skin [29, 73] as this can indicate abnormalities like malignancies, inflam-
mation and infections. Besides the application of thermographic screening
in clinics, mass screening passengers using infrared cameras at airports has
gained interest after the outbreak of SARS in 2002 and H1N1/A (swine flu)
in 2009 [108]. The advantage of this method lies in the quick and non invasive
possibility to screen a large amount of people for the identification of febrile
patients without causing too large transition delays [31]. Nevertheless current
studies state that relying on thermographic scanning and indications of fever
alone do not yet achieve feasible results to become a full replacement of
other methods [101]. Another application of thermographic imaging is breast
thermography [48, 73, 9]. Since 1982, breast thermography is approved by the
FDA for breast cancer risk assessment [76]. Thermography uses the fact that
vessel activity in pre-cancerous tissue and tissue surrounding breast cancer
is significantly higher than in normal tissue which shows up as regions with
higher temperature than normal tissue. As there is currently no test that
perfectly detects all cancers and as mammography and thermography analyze
different pathological processes they are not suitable to replace each other
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but should be regarded to supplement each other. Finally, Jiang et al [71]
review several other usages of thermography in the medical field.

On the other side of the visible electromagnetic spectrum, X-rays cover
the range between 10 pm and 1 nm, followed by the spectrum of gamma rays
with wave lengths with less than 10 pm.

Scintigraphy, SPECT, PET Gamma rays (γ-rays) are electromagnetic
radiation of very high frequency which are produced (amongst others) during
decay of radionuclides (radioisotopes). Scintigraphy is a medical imaging
technique, where radiopharmaceuticals are used to visualize the radiation of
radionuclides and radiopharmaceuticals in the body. Such radiopharmaceuti-
cals (a.k.a. radioactive tracer) can be substances that are enriched to emit
radiation. The advantage of such tracers is that the body cannot distinguish
between the regular and enriched substances so that the tracer integrates into
the regular metabolism without disturbance after being taken internally. After
having accumulated in the according organ or skeletal part, special cameras
are used to capture and visualize the emitted radiation in two dimensional
images. Scintigraphy is used for example in case of the diagnosis of pulmonary
embolism. Another application is bone scintigraphy, which is used to detect
and visualize abnormalities or bone metastases [121]. Single photon emission
computed tomography (SPECT) and positron emission tomography (PET)
use the principle of scintigraphy in a way that not only static two dimensional
images are produced. In SPECT and PET, special cameras rotate around
the patient’s body and record the produced radiation. By using an inverse
radon transform, sectional views through the body can be reconstructed.

X-ray and CT Last but not least, there is the spectral range between
10 pm and 1 nm which is covered by X-rays. X-rays were discovered November
8th in 1895 by the german physicist Wilhelm Conrad Röntgen. In 1901 he
received the Nobel Prize “in recognition of the extraordinary services he has
rendered by the discovery of the remarkable rays subsequently named after
him” [103]. On December 12th in 1895 Röntgen recorded an X-ray image
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of his wife’s hand which can be seen in Figure 3.1. This started the history
of medical X-ray. Just one year later in 1896: F.H. Williams reported the

Figure 3.1: Image of the first “Röntgenogram” in history which started
a new era. Röntgen’s first medical X-ray at November 8th, 1895 shows an
X-ray image of his wife’s hand.

first chest X-ray [126, 35]. In 1902, G. E. Pfahler and C. K. Mills reported
the first X-ray of a brain tumor. In 1913 William David Coolidge invented
the first hot cathode x-ray tube for the easier generation of x-rays. Four
years later in 1917, the Austrian mathematician Johann Radon published the
mathematical fundamentals of the “Radontransformation” [115] which forms
the basis for the calculation of spatial objects from filtered back projection.
Allan McLeod Cormack reinvented the radon transformation in 1963–64 as he
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only stumbled over Radon’s work by chance in 1972 [95]. Finally, in 1972 the
first commercial CT Scanner was demonstrated by Godfrey N. Hounsfield at
the Mayo Clinic (Rochester, MN, USA). Only two years later in 1974, the first
commercial scanner ’SIRETOM’ from a medical manufacturer (Siemens) was
announced and five years later in 1979 G.N. Hounsfield and A.M. Cormack
received the Nobel Price in Physiology and Medicine “for the development of
computer assisted tomography” [104].

In the past century, X-rays have gained huge attention in the medical
imaging field [35]. During this time, the use of X-rays has proved for the
detection and visualization of pathology not only in bone structure but also
in soft tissue. Well known applications for example are chest X-rays for
the detection of tuberculosis, pneumonia and lung cancer and abdominal
X-rays for the detection of stones in the gall and kidney and also X-rays in
orthodontics and dentistry to analyze the jawbones and the teeth.

In fact, this success has led to more than 62 million CT scans in the U.S.
in 2007 [26] and about 9.85 million scans in Germany [45] (doubled from 1996)
so that in 2006 the average radiation exposure was about 3mSv per year in
the U.S. and 1.9mSv in Germany [45]. Regarding these numbers, it might
seem that MRI is the better choice over CT as MRI images appear similar
without applying ionizing radiation. Nevertheless, the decision between MRI
and CT strongly depends on the type of the exam. Cancer, pneumonia and
chest X-rays for example are typical uses for CT as well as bleedings in the
brain, bone injuries or visualizations of organs and the lung. MRI in contrast
is the choice in case of visualizing tendons and ligaments as well as the density,
composition or injuries of the spinal cord or tumors in the brain. Concluding,
CT/MRI is used in cases of visualizing the morphology, whereas SPECT/PET
is used for examining the metabolism.

The downside of this huge and even growing amount of CT scans each
year is not only the exposure to radiation of the patients. Another problem
arises with the sheer amount of information that is produced by this massive
amount of images that is produced with each scan.
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During the past, it has become quite common to scan large parts of a
patient’s body. The amount of image data that is produced during such
a scan of course depends on a variety of factors. The main factors for the
resulting size are the resolution of the CT scanner in all 3 axis and the size of
the scanned body region. Depending on these factors, a typical thorax scan
that covers the area between the hips and the shoulders can result in image
volumes from 40Mb to more than 1Gb. Each volume is thereby composed
of several million 3 dimensional voxels, where all voxels in the same plane
form a 2 dimensional slice. The complete scan is called a (3d) volume scan.
Modern systems can also produce 4d volume scans with the 4th dimension
being the time. In a 4d scan, the clinician can for example observe a beating
heart in full 3d. The rest of the thesis will mostly deal with 2d and 3d
scans while the extension to 4d is trivial for the cases described in this thesis.
After recording the volume scan, the data is processed and delivered to the
radiology information system (RIS) and archived in a picture archiving and
communication system (PACS) where it has to be archived for several years
depending on country and state regulations.

Without proper methods for large scale and fully automatic methods for
knowledge discovery and data mining in medical imaging, these PACS contain
a huge amount of implicit know how which is only accessible through either
prior knowledge to a certain volume scan or through the according health
reports.
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Chapter 4

Slice Localization

This chapter of the thesis deals with the automatic localization of a single
image within a CT volume scan. The remaining chapter is starting with a
description of use case in Section 4.1 to motivate the topic, followed by a
more detailed problem description Section 4.2 and a discussion of the related
work in Section 4.3. Afterwards, the first approach using a multi represented
(MR) descriptor is presented in Section 4.4 which was extended to the radial
descriptor described in Section 4.5. For cases, where more than a single slice
is available, an extension of the radial descriptor is shown in Section 4.6. The
three methods are evaluated in a combined evaluation, shown in Section 4.7.

Material presented in this chapter is published in [40, 53] and [54] with
smaller data sets. Thus there will be slightly different values in the evaluation
chapters of this thesis compared to the publications.

4.1 Use Cases

Single volume scan: If a radiologist is performing his diagnostics based
on the volume scan that he just recorded and which is loaded into the RIS, he
might not need additional image data in order to create the radiology report.
This standard work flow should be covered by most of the RIS tools on the
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market.

Loading a scan by a single slice: This use case deals with the situation
where a clinician starts with a single CT slice. This is a typical situation if
the clinician receives a report for example via email or from a radiologist who
just forwards the most relevant slice instead of a complete volume. However,
if the clinician needs to inspect the body area close to this image, he currently
only has the possibility to request the complete scan from the PACS, navigate
to the according position and then continue his diagnosis.

What he actually would need would be a possibility to request only a
small sub volume of the original scan. This could for example be solved, if the
PACS provides an outline of the scan so that he just requests a sub volume.
A further improvement would be a query by example (QBE), where he can
tell the PACS that he needs the sub volume of a certain scan that surrounds
the query image so that he defines the region implicitly by just referencing
the image.

Comparison of multiple scans: A more advanced yet also usual scenario
is the situation where a clinician needs to check the convalescence of a patient.
In such a case, the radiologist needs to compare the scan that he just recorded
with a scan that was recorded at a previous time in order to judge the possible
advances of treatments. In this case he needs to query the PACS in order to
load the according volume scan of the patient. Depending of the size of the
scan that is used for comparison he needs to load several hundred megabytes
up to a gigabyte from the PACS via the network. The time between the
radiologist requesting a volume scan and having the complete volume loaded
in the RIS depends on various factors like the speed of his local computer,
the network speed and load and the speed of the PACS server and of course
on the size of the requested volume which will have to be loaded from disc on
the PACS server. Assuming ideal conditions (no overhead for encoding, no
additional load on the network, instant response and zero load on the PACS
side), the transfer time for a single GB via a 100Mbit network is 83 s plus at
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least 8 s for the time to read the volume from the PACS disc. This results in
a total of more than 1.5 min of loading time. One could argue that transfer
time could be reduced by compressing the data. But it can be assumed that
the time saved by compression is compensated in a certain way by non-ideal
conditions of the system. Interviews with people working in radiology have
shown that waiting times up to some minutes are not uncommon in this
scenario. During this time the clinician can only proceed to a very limited
degree as he is waiting for the system. When the scan is finally loaded, the
clinician needs to align the scan loaded from the PACS to the part of the
body shown in the newly recorded scan. After loading and aligning, he can
proceed with his actual work.

It should be mentioned that in such a case, the clinician is loading the
complete scan from the PACS even though he usually only requires a very
particular and small sub volume of the data. In an improved workflow, the
clinician would query the PACS to obtain a preview or outline of the scan,
then select only the sub volume of interest and transfer only this small part
of the data and thus save a large part of resources needed for the transfer of
data.

In an even more improved workflow, the clinician would start in his newly
created scan. In this scan, he would navigate to the according body position
and then just requests a sub volume from another scan from the PACS by
just hitting a button without having to define any further details. The system
would then analyze the data which is displayed to the clinician, determine
the according sub volume area automatically and query the PACS for the
particular data which is of course far less than a complete scan. Assuming,
that the local volume scan is already loaded, the steps needed in the current
and the improved workflow would be as in Table 4.1.

Comparison to similar cases and knowledge discovery: In the pre-
vious use case, it was assumed that the clinician already knew exactly which
scan he needs to open for comparison. The problem becomes a lot more
complicated if the clinician’s query is more imprecise like “search for similar
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Table 4.1: Comparison of a current and an improved workflow, assuming
that the first scan is already loaded.

Current workflow Improved workflow
- determine scan B for comparison - determine scan B for comparison
- load complete remote volume B - load sub volume of B
- wait for scan to load (> 1min) - wait for scan to load (< 0.25min)
- align scans manually - system aligns scans automatically
- continue with diagnosis - continue with diagnosis

entities in the same body region of other volume scans”. In this case, two
factors complicate the issue: The first factor is the restriction to the same
body position and the second one is the fuzzy formulation of similarity.

4.2 Problem Description

This part of the thesis will deal with the latter problem of the fully automatic
determination of the relative position of a given slice within the body which
is important in the last two use cases introduced on page 20 and 21. Manu-
facturers of CT devices tend to argue that this issue is not a problem as the
table position is encoded in the meta data of the DICOM files so that the
body position can be derived directly from this coordinate. However, relying
on the DICOM header information raises a couple of problems:

First of all, even if the table position is encoded reliably and correct, the
patient’s position on the table needs to be calibrated manually before each
scan. Otherwise, the position information contains a certain offset which
would have to be detected and compensated. Gueld et al [50] have shown in
their work, that DICOM meta data entries like ‘patient position’ or ‘body
part examined’ are often imprecise or even wrong. In such cases, this error
would have to be detected and compensated again. A brief analysis of the
‘patient position’ values from the data used in this thesis fully supports the
finding of Gueld et alas the values differ up to 20 cm from the expected
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position.

In the above case it was assumed that meta data information is available.
Especially in the case, where only a single slice is available, the meta data
information need not be present or accessible. If the query slice is for example
embedded in a report, then it depends on the embedding program whether
or not the meta data is not modified, removed or accessible at all.

Even if the position of the patient would be calibrated, accurate and
accessible, a pretty natural problem remains. Patients differ in height so that
the absolute position of a slice is not sufficient for queries concerning scans of
persons with different body sizes.

Due to these reasons, parsing DICOM header meta data does not yield a
viable solution for obtaining the relative position of a single CT slice. The
above use cases and discussion poses the following requirements to a method
that can compensate the problems identified above:

The method solving the problem stated above should be fully automatic,
so that it can be applied to a large amount of data without human interven-
tion. It should also consume resources in terms of CPU and memory in a
manner that allows large scale deployment which is crucial if the possibil-
ity should be taken into account that the method should be deployed on a
clinical PACS containing several years of unprocessed patient data. This also
requires stability of the method, so that there are no highly sensitive internal
parameters that, when changed in a very small manner, have extraordinary
impact to the results. As CT scans are often performed with different settings
or contrast media taken internal, the method is required to be robust against
contrast media, image modalities and if possible also robust against artifacts
caused by implants. And last but not least, it must be ale to map people
with different body size and shape into a uniform height model.

To achieve this, the prediction of the relative position along the z-axis
(cf. Figure 4.1) is proposed. From a technical point of view the methods are
based on gradient and texture features and employ instance-based regression
for making predictions of the relative position of the slices within the body.
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Figure 4.1: Schema showing the terminology for body planes. z: transverse
plane (green), x: saggital plane (red), y: coronal plane (blue).

4.3 Related Work

As described in the previous sections, localizing a CT slice within a human
body can enormously facilitate the workflow of a clinician. Nevertheless, this
area of research has not yet received much attention. Even though there
have been approaches to determine the body region from a topogram [27],
the general approach is to localize invariant landmark positions as starting
points and from there to interpolate for forming a relative coordinate system.
Similarly, the authors of [60] propose an elastic mapping of the slice positions
to a reference scale by detecting one of eight predefined anatomic points
with known position and interpolating the position of the images between
them. The authors of [32] propose a method to detect and localize a set of
10 different organs in CT images. They estimate both the location and the
extent for each organ by predicting the bounding box containing each organ.
They use a tree-based, non-linear regression approach based on multivariate



4.4 Mutli Represented Descriptor 25

regression forests. These are similar to random forests but are able to predict
continuous values instead of discrete classes. Seifert et al [123] proposed a
method to detect invariant slices and single point landmarks in full body scans
by using probabilistic boosting trees (PBT) [135] and HAAR-like features
[107, 139]. Their algorithm detects up to 19 salient and robust landmarks
within a volume scan. Subsequently, the detectors are incorporated into a
Markov Random Field. Nevertheless, it cannot be used for localizing single
slices or very small sub volumes as it operates on full body scans only. Also
there need to be several landmarks detected in order for the algorithm to
work.

So, previous techniques for localizing a CT slice within a human body
model usually require more input than the actual single query slice. The
approach which is most related to this work allows the localization of CT
volume sets which was proposed by Feulner et al [43]. In this work the
algorithm first detects the patient’s skin and removes noise caused by the table
and the surrounding air. From the remaining image, intensity histograms
and SURF descriptors [11] are extracted and clustered into visual words.
Afterwards, the method combines nearest neighbor classification with an
objective function to classify and register the slices. The widths of the CT
volume sets range between 44mm and 427mm. Using a scan with a high
resolution such small sub volumes can comprise up to 50 slices. The average
reported error lies between 44mm for small query volumes and 16.6mm for
large query volumes. According to the authors, their method does not perform
well when localizing single slices only.

4.4 Mutli Represented Descriptor

4.4.1 Introduction

The methods mentioned in section 4.3 usually generate complex models
for large and pre-structured query input in form of CT sub volumes. This
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Figure 4.2: Slice localization by kNN regression.

method requires only a single query slice which is transformed into a feature
vector FV ∈ RN . This feature vector is used localize the image via k-nearest
neighbor regression as illustrated in Figure 4.2. .

The idea of combining several feature representations is a well known tech-
nique in image retrieval and machine learning [94, 133, 8, 151, 33]. Therefore,
the advantages of texture features and edge filters are leveraged by using
the combination of histograms of oriented gradients (HoG) [24] and Haralick
texture features [63] to describe the similarity between particular CT slices
in order to optimally cover regions of enhanced uncertainty.

The extraction method itself is inspired by Lazebnik et al [89], who propose
to use a spatial pyramid kernel to obtain locally sensitive features. In this
approach, a modified spatial pyramid kernel is applied to obtain several
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regular and rectangular, disjoint regions from the image. These regions act as
information sources for the following extraction steps. Finally, each slice of a
volume scan is represented by multiple feature descriptors of different kinds.

The localization process determines the position of the slice along the
z-axis. An obvious but challenging problem of position prediction along the
z-axis is the varying height of the patients. In order to solve this problem,
each CT scan is scaled into a standardized height model with a domain of
[0, 1] with 1 representing the sole of the foot and 0 representing the top of the
head. This mapping allows the localization of single slices independently of
the persons’ gender, height and age. In contrast to a method using absolute
positioning, the proposed method is not prone to errors originating from
patients of different heights.

4.4.2 Feature Extraction

Image descriptors using the first order derivate of the pixel data are well
known from the field of object recognition [97] and scene recognition [89] and
are usually applied to scenarios in the domain of digital photos or pictures.
In the field of object recognition, feature extraction usually involves the
extraction of multiple features per image with at least one feature vector
describing an object of interest. The resulting bag of features is then stored in
the database for later retrieval tasks. The advantage is that objects of interest
can be described very locally and usually produce similar feature vectors even
on different backgrounds. The drawback of this approach is usually a more
complex distance measure. As two images are represented by bags of features,
distance measures used to determine the (dis)similarity between images (like
the sum of minimum distances or single link distance) often require O(NM)
runtime with N and M being the size of the feature bags.

In the field of scene classification, it is more common to use just a single
feature vector in order to describe a complete image or scene. Typical descrip-
tors are for example color histograms that are extracted from the complete
image. As such a descriptor suffers from the loss of spatial information in the
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image, the idea of image gradients and texture features was combined with
the idea presented in [24] where a spatial pyramid kernel was used for shape
representation in order to classify regular images of the Caltech dataset[42].
Thus the descriptor in this approach describes image features from certain,
fixed regions of the images. The resulting data is then concatenated and
forms a single, compound feature vector that describes the complete image
but retains local sensitivity according to the processed image regions.

Spatial Pyramid Kernel

Since retrieving similar slices from volume sets is rather akin to scene clas-
sification than to object recognition and due to the more complex distance
measure in case of a bag of features approach, it was decided to build a single
feature vector for complete images. However as stated above, the price for
this decision was the loss of spatial information if the descriptor completely
ignored the spacial distribution of the pixel data. In order to keep track of the
spatial distribution as well, a modified spatial pyramid kernel was applied.

This decision offers a compromise between a single global descriptor and
many local descriptors. By employing a fixed spatial separation into sub
regions, the features extracted from those sub regions also do not need
to be handled as several independent vectors. If the separation into sub
volumes is deterministic and the same for all images, there is the possibility
to concatenate the features from the sub regions into one large feature vector.
The advantage of this approach is that the improved distance computation
distance computation during the knn search compared to a multi instance
feature representation.

The original implementation of the spatial pyramid kernel extracts features
from a region covering the complete image and then divides the image into
four disjoint, equally-sized subregions as it is known from quad-trees [44, 127].
For each of these subregions, the extraction and divide steps are executed
recursively until a certain level is reached. The resulting features are then
weighted and serialized into a single feature vector. Obviously, the resulting
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(a) Original pyramid ker-
nel using 21 regions.

(b) Modified pyramid ker-
nel using 26 regions.

(c) Modified pyramid ker-
nel with bounding box ap-
plied.
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(d) PHoG descriptor for Figures4.3(b) (complete image) and 4.3(c) (ROI only). The plots
display the strongly varying feature values of the given images in log scale.

Figure 4.3: Modified pyramid kernels and impact of ROI detection on
feature vectors.

dimensionality grows with more than O(4n) with n denoting the level of the
subregions.

For the current scenario, this approach has two major drawbacks: First,
to achieve a high resolution of the spatial distribution, a comparatively
large number of levels would be required which is leading to a very high
dimensionality of the resulting feature vector. Second, as mentioned above,
splitting the image region into four equally-sized subregions requires a split
in the middle of the x- and y-axis which is quite disadvantageous in the case
of CT scans because patients are usually not absolutely centered upon the
image. Thus, the first split is performed in the middle of the image but the
split axis is hardly centered upon the center of the patient’s body as the
patient’s position is varying between different scans. Therefore, significant
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body structures like the spinal column are often either to the right or to the
left side of the split which leads to strongly varying feature vectors for similar
but not slightly shifted patients.

These issues lead to the modification of the spatial pyramid kernel in a
way that the image region is split into 25 disjoint, equi-sized regions instead
of only four regions as can be seen in Figure 4.3. This procedure has two
advantages: The first advantage is that the spatial information gathered
from the sub regions is much more robust against varying positions of the
patient. The second advantage is that processing only one level of the
recursion is significantly reducing the dimensionality of the resulting feature
vector. A reason for the multiple levels in the original spatial pyramid kernel is
robustness against scaling and object positioning. However, in this application
there are no strong differences in the object position and scaling. Thus, the
descriptors employs only two region levels. To compensate any remaining
scaling and transversal effects, the following preprocessing step is applied.

Detecting Region of Interest

Partitioning a complete image into 5x5 disjoint regions can lead to image
regions that are either almost empty (for example in the edges of the image,
as can be seen in Figure 4.3(d)) or mostly occupied by the shape of the
table on which the patient is lying. As these regions implicitly reduce the
descriptiveness of the resulting feature vector, a region of interest (ROI)
detection is employed to detect the bounding box around the patient’s body.

Each border of a ROI is detected by scanning the image in a sweep line
manner and and keeping track of the following variables: i, the index of the
currently processed row/column, cP , the amount of consecutive pixels larger
than the defined threshold of −600 HU and cL: the amount of consecutive
rows/columns that are regarded as border candidates.

In order to find the top border of the ROI within an image, the algorithm
starts at the top of the image (i = 0) and scans the pixels of this line. If a
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pixel has a value above −600 HU, cP is raised by 1, otherwise, cP is reset to 0.

As soon as cP > 100 (indicating that 100 consecutive pixels had a value
greater than the threshold), the algorithm decides that the current line is a
border candidate. In that case, cL is raised by 1 and the algorithm proceeds
with the next line. If all pixels of a line are scanned without cP exceeding
the threshold, the line is not a border candidate, and cL is reset to 0 and the
next line is processed. As soon as cL > 20 (which means that 20 consecutive
border candidates were found), the algorithm stops and returns max(0, i− 20)
as the top border of the ROI.

The above steps are repeated for each side of the image. The resulting
borders enclose the ROI of the image which can then be used in the following
feature extraction steps. Since the borders on each side do not have to
display the same width, the method centers the patient. Furthermore, the
expansion of the body on the image is unified and thus, the body regions of
the 25 patches can be much better compared among scans displaying different
patients.

Image Features

As mentioned before, Haralick texture features [63] are used as the first
image patch representation in this method. For the proposed method, all 13
Haralick features for five different distance values (1, 3, 5, 7, 11) are computed.
This computation is done for each subregion of the spatial pyramid kernel
defined above (including level 0, representing the complete image). After
extracting the features for all subregions, the feature values of a level are
serialized and normalized. This is done to achieve an equal weighting of the
different levels of the spatial pyramid kernel. The resulting feature vector
finally comprises 26 · 13 · 5 = 1690 features. As stated in [63], some of the
features are highly correlated. To remove the redundancies and correlations,
a principal component analysis (PCA) is applied on the features.

The second image patch representation is a histogram of oriented gradients:
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Before extracting gradient features from an ROI, some preprocessing steps
have to be applied. This includes the application of a Gaussian blur with a
radius of 1 px to remove noise, followed by the extraction of important edges
Pedge from the image by applying the Canny operator[28] C. Important edges
are defined by all locations where the Canny operator computes values greater
than zero (4.1). In the next step, the gradient’s angle G(x, y) is computed at
the location (x, y) of important edge pixels (4.2).

Pedge = {(x, y)|C(x, y) > 0} (4.1)

G(x, y) = arctan ∂y
∂x

; where (x, y) ∈ Pedge (4.2)

Afterwards, a 7 bin histogram is built for all G(x, y) within the ROI. The
resulting histograms are serialized and normalized just as the Haralick features
before. Finally, this process creates a feature vector with (1+5 ·5) · 7 = 182
dimensions. This representation is referred to as PHoG (pyramid histograms of
oriented gradients) in the rest of the section. Even though the dimensionality
of this representation is much lower compared to the Haralick representation,
the dimensionality is still very large so that a PCA is also applied to this
representation.

4.4.3 Localization

The objective of this task is to receive the slice descriptor presented in the
previous section and predict its most likely position in the standard model.
To solve this task, an instance-based regression model is employed which
is based on a training set consisting of the CT slices from a number of
patients. Each example slice xi taken from the scan s(xi) is described by
l feature representations (xi,1, .., xi,l) ∈ R1 × .. × Rl and is labeled with its
relative position in the scan yi ∈ [0..1]. From a machine learning point of
view, localization can be regarded as a regression task. However, there are
two important differences in the object representation that prevent ordinary
regression techniques from offering accurate results in this scenario: The first
difference is that it is needed to rely on all of the l object representations and
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thus the learner should be suitable for multi-modal problems. The second
difference is the heterogeneity of the example set. Since the example objects
are combinations of various CT scans, the training set cannot be considered
to be drawn from the same statistical distribution. Instead, the images within
the same scan are usually more similar to each other than to the images of
other scans having a comparable position. The proposed localization method
is thus designed to consider both aspects to allow a good positioning accuracy.

The basic approach behind this method is to find in the training set
the k-nearest neighbors to the target slice t and examine their positional
labels. The final prediction is then derived by aggregating the labels of these
neighbors. After having received the k-nearest neighbor positions, the mean
value of the position labels is employed as target value. Hereby, the Euclidean
distance is used to describe the difference between objects which is a standard
metric in similarity search and instance-based learning tasks.

Having training examples taken from several similar but not identical
distributions, i.e. various CT scans, sometimes causes problems for prediction.
Basically two reasons for the similarity between the target slice and an example
slice in the training set can be distinguished: The first is, that the positions
of the slices in the scan are quite similar. The second is, that slices which
are contained in complete scans, are generally quite similar in consecutive
regions. While the first reason is the phenomenon the method is based on
(high resolution scans), the second reason can seriously distort the prediction
result by the following effect. Due to the general similarity between nearby
images of a single scan the knn search preferably takes examples from the
most similar scan instead of taking the examples from various scans with
comparable positions. To circumvent this effect the classical knn search is
modified in the following way: First the most similar CT slice is searched
within each scan. From this set, the k slices having the smallest distance
in the underlying feature space to the target slice are computed. By taking
at most one slice from each scan, it is avoided that the localization process
is overly dependent on a single scan but derives its results from k different
scans.
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As mentioned before, the method is based on different feature represen-
tations and thus, the learner has to be extended to base its prediction on
a mixture of all input spaces. This has to be done as there is the problem
that some feature representations are less suited for certain regions of the
body, while they provide excellent results in certain other regions. For ex-
ample, PHoG descriptors are well-suited for areas with a rich bone structure.
However, they are less descriptive in the abdomen area. To integrate this
diversity, this method bases its decision on the feature representation that
most probably offers the best prediction quality for the current input image.
In other words, the position of the current input slice is predicted in each of
the available feature representations and afterwards the reliability / coherency
of the prediction is predicted in each representation. To measure the degree of
coherence, the variance of the positions within the k-nearest neighbors in each
representation is calculated. If the variance is large, the k-nearest neighbors
are placed in different parts of the body and thus the given representation
does not yield a consistent statement about the position of the slice. On
the other hand, if the labels of the k-nearest neighbors are placed in similar
positions, the variance is small and the given representation offers a coherent
prediction. In this case, the prediction corresponding to the representation
providing the smallest positional variance for a given target slice t is chosen
as a final result.

4.5 Radial Descriptor

4.5.1 Introduction

In Section 4.4 the Multi Represented-Descriptor (MR-Descriptor) was intro-
duced. Even though the use of the MR-Descriptor resulted in an average error
of a bit more than 3 cm, there are still body regions where the localization is
larger than 10 cm as can be seen in Figure 4.8(a) (p. 50).

Motivated by these findings, there was the decision between either using
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additional feature descriptions and machine learning techniques or to pay more
attention to the anatomical structure of the human body,modify the descriptor
accordingly and avoid additional machine learning steps in the processing
chain. Adding additional feature descriptors combined with sophisticated
machine learning techniques would have added some more additional degrees
of freedom to the problem. The latter choice tries to make use of human
perception and the question, how a radiologist / physician perceives and
distinguishes different body regions. Discussions with a radiologist lead to the
modification of the descriptor to adjust more to the human skeleton structure
and the body shape itself.

The aim of the modification was to reach a possibly even smaller error
average but even more important a smaller error variance and in general a
reduced error rate in the shoulder and abdomen as these regions posed the
largest errors in the former solution. Same as in section 4.4, the query should
be represented by a single slice only and the use of land mark detectors should
be avoided.

4.5.2 Feature Extraction

As stated before, the aim was to modify the feature descriptor to take the
human skeleton and body shape into account than in the previous approach.
To achieve this goal, the descriptor was refactored and thus improved.

Improvements to the MR-Descriptor

To improve the descriptor, the shape of the descriptor was changed to a radial
representation inspired by the works of Belongie et al [13]. The main reason
was that the rectangular shape of the bounding box often produced very
sparse or even empty boxes in the corner of the bounding box. Another reason
was the fact that by using a radial descriptor model instead of a box model it
was able to produce a more fine grained model of the head and the chest and
thus also to better distinguish between chest and abdomen. This is mainly
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motivated by the fact that the rib cage is modeled much more accurate so
that the presence of bones realized a significant element compared to other
body regions.

The second change to the descriptor was the strategy of finding the region
of interest (ROI) itself. The former strategy of finding the bounding box
sometimes resulted boxes that were larger than required. Especially a better
adaption with respect to the table on which the patient is lying was desired.
Instead of the sweep line approach described in section 4.4.2 (p. 30), a particle
cluster based approach was applied in this case.

The next change was to modify the strategy to create sub regions within
the region of interest. In this step, the rectangular sub regions of the ROI
were replaced by a sector / shell model. This has both the advantage that
ribcage, head and shape of the body can be modeled much better and also
that the subdivision strategy fits perfectly with the radial nature of the ROI.
In contrast to the previous approach, the features are now only extracted
from the sub regions - in the former approach, the features were extracted on
the complete ROI combined with the features from multiple sub regions.

After changing the shape and division strategy, the features themselves
were evaluated and adapted and adjusted. The major concern against gradi-
ents and Haralick features was the very noisy nature of CT images. Compared
to plain old photography, CT images show a very noisy picture. Even with the
application of blur filters and noise reduction, there remains quite some noise.
This lead to the decision to either apply complex reconstruction techniques
or to employ different features. While reconstruction often requires spatial
or semantic information that was not existent with just one query slice, the
decision was made to evaluate different features before trying to apply context-
free reconstruction techniques. Thus, the gradient histograms and Haralick
features were replaced by histograms of gray values which corresponds to
measuring the distribution of certain tissue types (soft tissue, air, water,
bones, etc) depending on the chosen HU range that should be taken into
account. The combination of different HU ranges will be called compound
radial image descriptor in the following.
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Image Preprocessing

The process of generating the compound radial image descriptor consists
of the following three steps: unifying the image resolutions, extracting the
patient’s body and combining the two image descriptors to a single radial
descriptor.

Unifying Image Resolution: The resolution of a CT image is deter-
mined by the setting of the according recording device and may vary depending
on several external factors. Thus it is needed to scale the image I to a common
resolution (1.5 px/mm) to obtain scale invariance between different scans.
The resulting image is defined as IS.

Extracting the Body Region: In order to separate the body from the
rest of the image, a compound region detection is performed on the scaled CT
slice IS: A compound region is defined as an area of pixels which is enclosed by
a contour of pixels with p(x, y) > τ . p(x, y) defines the HU value of a pixel at
the position (x, y) and τ defines the according threshold (-500HU in this case).
The resulting compound regions are extracted by starting a contour tracing
algorithm from each pixel in IS with p(x, y) > τ . The applied algorithm
is implemented by using the analyze particles function of ImageJ [1] which
adapts the well known contour tracing algorithm of Pavlidis [109]. Afterwards
the bounding box of the largest compound region defines the ROI represented
by the area of the patient’s body on the image IS (cf. Figure 4.4(b)). IS is
then cropped to this bounding box, building the image IROI .

Feature Extraction

Model Creation: Next, a radial sector/shell model is created from which the
two image descriptors will be extracted subsequently. The model is illustrated
in Figure 4.4(c). The first descriptor focuses on dense structures (bones)
while the second descriptor concentrates on soft tissues (like organs etc.).
Both descriptors proposed in this section are represented by the circumcircle
of IROI with radius r. In order to form the descriptors, the circular area is
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divided into ny shells and nx sectors resulting in nx · ny = i bins. The size of
such a sector is defined by φ = 2π

nx
, the size of a shell is defined by r

ny
. For

each bin i, both the number of pixels of interest (POI) pi and the number
of other pixels (NPOI) ni is calculated. A POI is defined as a pixel with
p(x, y) ≥ ψ1 or p(x, y) ≤ ψ2 depending on the type of descriptor, which are
described subsequently. The values of bins /∈ IROI are set to a penalty value
of −0.25 to achieve a larger difference between descriptors from regions with
different aspect ratios. Thus the value vi of a bin i is defined as

vi =

−0.25 if bin i /∈ IROI
pi

pi+ni
else.

(4.3)

An alternative approach would have been to model the radial descriptor
not by a circumcircle but to fit the ROI into an ellipse that fits the ROI better
than a circle. Yet, this leads to the fact that the information about the aspect
ration is lost or at least weakened. To compensate this lack of information,
an additional dimension could have been added to the vector. This would
have raised the issue of determining a proper weighting for this dimension
compared to the other dimensions. Comparing the two possibilities, the
principle of Occam’s razor was applied and the former possibility of setting
empty cells to a default value was applied.

A visualization of the model is illustrated in Figure 4.4.

Descriptor 1: Bone structure: The first part of the descriptor takes
the form and location of bones within the body into account as the skeletal
structure of the human body plays a big role in human classification of the
body position. Thus, the threshold is set to ψ1 = 300 HU so that the amopunt
of all POIs is defined by

pi = | {p(x, y) ∈ IROI |p(x, y) ≥ ψ1} |. (4.4)

Regarding the spatial distribution of the bones (e.g. cranial bone, chest,
shoulder joints, hip joints), it was observed that the outer shells of the
descriptor are more relevant than the shells in the middle of the image as
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(a) (b) (c)

Figure 4.4: Visualization of the feature extraction process for a neck scan
image (a): the image is rescaled and the body (in this case the head) is detected
(b) and approximated by a bounding box. Afterwards the sector/shell model
is created (c) from which the features are extracted.

there where hardly any bones detected. So, each bin of the descriptor is
weighted w.r.t. the shell index. In particular, for each bin i the value of pi is
weighted with the squared index of its shell:

pi = pi · shell(i)2 ; i ∈ [1, nx] (4.5)

where shell(i) denotes the index of the shell containing the area of bin i. An
extensive evaluation of the parameters proofed the best results with nx = 24
and ny = 11.

Descriptor 2: Distribution of soft tissue: Some areas in the human
body like the abdomen display a comparatively small amount of dense struc-
tures. Therefore, a descriptor denoting the location and arrangement of soft
tissues is created. The threshold for this descriptor is set to ψ2 = −500 HU.
Thus, the amount of POIs in this case is defined by

pi = | {p(x, y) ∈ IROI |p(x, y) ≤ ψ2} |. (4.6)

For this descriptor, another parameter evaluation proved the best results with
nx = 18 and ny = 8. In contrast to the previous descriptor, no significant
relation between bins and their shell indices could be detected so that all bins
were weighted equally.
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Same as in the case of the descriptor for the bone structures, variations of
up to ±4 of the parameter values of nx and ny do not have a large impact
on the results. The complete settings for both descriptors can be seen in
Table 4.2.

Table 4.2: Parameter setting for both descriptors.

Type ψ Sectors nx Shells ny Angle φ Weighting Bins
Bones ≥ 300 HU 24 11 15◦ quadratic 240
Soft ≤ −500 HU 18 8 20◦ equal 144

Combination and Dimensionality Reduction: Finally, both descrip-
tors are concatenated to a single feature vector q. An additional step is the
application of a principal component analysis to reduce the dimensionality of
the feature vectors. In the experiments, the dimensionality could be reduced
down to 50 dimension without loosing too much accuracy.

4.5.3 Localization

Same es in Section 4.4, the task of the prediction method is to localize
(a.k.a. register) the query vector q representing the query slice with unknown
position qz to a value z ∈ [0, 1] in the standardized height model. As the
localization/prediction method proposed so far was still convenient, there
was no change in the localization method. Thus the two level knn search
described in Section 4.4.3 (p. 32) was retained.

The only difference to the previous approach is the distance metric: In
contrast to Section 4.4, the cosine distance measure (cf. (4.14)) is now used
for distance computations instead of the Euclidean distance as it performed
slightly better.
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4.6 3D Detection

4.6.1 Introduction

After the successful improvements from the MR-Descriptor in Section 4.4 to
the combined radial descriptor in Section 4.5 it should be evaluated if the
technique could also be extended to small volume scans. Even though [43]
has shown an error rate of less than 5 cm in case of query volumes with a
size of 44mm, this approach still has the drawback that it does not perform
well with smaller volumes. Thus, it should be evaluated, if the gap between
one-slice-queries and small sub volumes could also be bridged by the use of
the combined radial descriptor. Thereby, combinations of image descriptors
and weighted combinations of spatially neighboring images as well as instance
based regression should be used to combine the information of adjacent images
to reduce the localization error even further.

Even though this seems very related to [43], there remains a significant
difference: Feulner et al clearly aim at registering sub volumes whereas this
approach just uses the information of several adjacent slices in order to form
a single image feature vector which should be more robust compared to each
other feature vector that is based on a single slice only.

Given the assumption that several adjacent query slices are present, it could
be argued that the feature extraction process should be changed so that each
voxel1 can make use of the information of its 3D neighborhood. Such a feature
vector could of course contain richer and possibly more reliable information
compared to a descriptor that is composed of several 2D descriptors because
each voxel can directly make use of the 3D neighborhood. If feature vectors are
extracted from 2D images and then aggregated again, the relative information
for each pixel is less than in the former case. Yet, the aim of aggregating
several nearby feature vectors is to make the single feature vector more robust
in case that one or more slices show some distortions or artifacts that would

1voxel: A 3D pixel which is described by an x, y and z coordinate plus an HU value
describing the attenuation of radiation in that location.
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be normalized and attenuated by adjacent slices.

But before trying to recreate a completely new feature descriptor for this
case, it should first be attempted if the simpler approach of combining the
already proven features would result in any improvement of the error and
stability at all. The findings of this attempt and the results will be discussed
in the following.

4.6.2 3D Features

As stated before, the approach proposed in this section addresses the local-
ization issue by considering m preceding and m succeeding CT slices of the
current query slice. As this process is executed as a post processing step
after the creation of feature vectors from single 2D slices, it can be seen as
an extension to the 2D method as the flexibility to use just a single CT slice
still remains.

For this task, a new modified feature vector FV 3D
i is formed by calculating

the weighted sum of the succeeding m and preceding m feature vectors. If the
current vector is not preceded or succeeded by m vectors, only the existing
vectors are used. Let FVi denote the i-th feature vector in the sorted list of
vectors for a single CT volume comprising n slices. Then FV 3D

i is calculated
as follows:

FV 3D
i =

min(i+m,n)∑
k=max(0,i−m)

f(|k − i|) · FVk, (4.7)
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where f(x) is one of the following weighting functions:

finverse(x) = 1
x+ 1 (4.8)

fsigmoid(x) = 2
1 + e0.3x (4.9)

fpolynome(x) = − x3

(m+ 0.1)3 + 1 (4.10)

flinear(x) = − x

m+ 0.5 + 1 (4.11)

finverse-squared(x) = 1
x2 (4.12)

g(x) = 1
σ
√

2π
exp

(
−1

2

(
x− µ
σ

)2
)

fGaussian(x) = g(x)
g(0) ;µ = 0;σ = m

2

(4.13)

All these functions have in common that f(0) = 1 and that the value of
f(x) decreases with increasing x, so that the weight decreases with increasing
distance to the source feature vector FVi.

4.6.3 Prediction

Same as in Section 4.4 and Section 4.5, the task is to map the feature vector
FVi of a CT image with unknown position to a value in the standardized
height model in the domain [0; 1]. The prediction itself remains the two-stage
k-nn search which is described in Section 4.4.3 (p. 32).

The distance computation is executed by employing the Cosine distance
(4.14) instead of the Euclidean distance (4.15) as it performs usually better
on high dimensional feature vectors than the Euclidean distance [114, 131].

distcosinus(q, p) = 1−
∑d
j=1 qj · pj
‖q‖ · ‖p‖

(4.14)

disteuclidean(q, p) =
√∑d

j=1 (qi − pi)2 (4.15)
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4.7 Evaluation

4.7.1 Data Set

The data set used for this thesis comprises 97 CT volume scans (38 neck
scans, 59 thorax scans) recorded from 74 patients (43 male, 31 female) of
different age, resulting in a total number of 53 437 DICOM images using
more than 26GB disk space. All scans are composed of multiple images
which are represented in 16 bit Hounsfield Units (HU) and have a resolution
of 512×512 pixels.

During the initial setup of the data set, it was ensured, that each patient
contributed at most one head and/or one thorax scan to the data set in order
to avoid adding near duplicate scans. Otherwise it could happen that one
patient contributes several thorax scans to the data set. If these scans are
taken within a comparatively short time, it can be assumed that a nearest
neighbor search will favor scans of the same patient again for localization.
While this might be welcome in the real application, it is not advisable in
the test environment as these patients will most likely always produce better
results than patients who just contributed one scan per body region.

All these scans cover the complete area between the top of the head up
to the end of the coccyx. It should be mentioned that the data set shows
multiple kinds of heterogeneity as the data set represents a real world data set
that was recorded under real conditions. Also, the scans were recorded with 5
different Siemens CT scanners and different settings so that a variety within
the data is provided as ground truth. Moreover, the transversal resolution
(z-axis) varies between 66 and 1 700 slices per scan. The resolutions along
the x- and y-axis are varying in the range of about 1.09 – 1.76 px/mm for
thorax scans and about 1.34 – 2.3 px/mm for scans of the head. Besides those
technical diversities, there are of course also challenges posed by the use of
contrast media, medical devices/artifacts like cables, cardiac pacemakers or
simply metallic dental implants (which obviously cause major disturbances in
the images) and of course the differing shapes of the patients’ bodies.
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In the following, the evaluation of the methods described in Section 4.4,
Section 4.5 and Section 4.6 are explained. For the evaluation of the proposed
methods, it was decided to use a leave-one-scan-out validation. In case of a
classical leave-one-out validation, only a single slice would be removed from
the test set and used as a query. As the used slice is very similar to the
adjacent slices of the same scan, this evaluation would over fit to the scan
from which the slice originates. Therefore, the evaluation is done using a
leave-one-scan-out. In this case, a complete volume scan is first removed from
the data set. Afterwards each slice of this scan is used as a query against the
remaining data set. The average of all single errors is then returned as the
total average mean error. As no patient contributed two thorax or neck scans,
it is guaranteed that the query does not over fit to the patient to which the
query slice belongs.

The quality of the methods is measured by the distance between the true
(annotated) position of the query slice and the result of the localization. The
difference is denoted as the error of a query. In addition to the average error
and the error histogram, the cumulative distribution function (CDF) for the
errors is computed as well. This indicates the probability that the error stays
below x cm: P (error < x cm). This is mainly done for two reasons: First, it is
then possible to compare to the results given in the work of Feulner et al [43]
who demonstrate the accuracy of their work by the values of the according
CDFs. On the other hand, the CDF has the advantage that is visualizes the
ratio of large errors in the overall experiments. This is important, because it
is preferable to lower the ratio of larger errors compared to optimizing the
ratio of small errors or just the mean error.

In order to provide a comprehensible error measure, the values of the
standard [0, 1] model are multiplied by 180 so that the complete model
represents an average western European male. The localization results are
usually measured in a 180 bin error histogram so that each bin corresponds
to a body region with a width of 1 cm. As the data set only covers regions
from the top of the head up to the coccyx, only the first half of the error
histogram is shown. The rest of the histogram is zero as there is no data for
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this body region.

4.7.2 Annotation

As mentioned before, one cannot rely on the information of the DICOM
header for obtaining the position of a slice. Additionally, different scans are
highly varying with respect to resolution and patient body size. Thus, two
computer scientists annotated the data above independently by hand using
the annotation tool shown in Figure 4.5.

Thereby, even a small mistake in the annotation tool of about 5 pixels
leads to an annotation error of up to 1.5 cm. Thus, a small positioning error
of the data remains in the ground truth which limits the accuracy of the
method on this data set. Another issue is that the patients in the data set
have their arms raised above their heads in case of thorax scans, whereas the
annotation tool only provides a skeleton with the arms beside the thorax (cf.
Figure 4.5).

This annotation alone might not fully respect differing proportions of the
human body between patients as the template skeleton in Figure 4.5 is of
fixed size. To address this problem, the annotation process was extended to
an additional annotation of stable landmarks2 that were defined by a medical
expert. The advantage of these landmarks is that an annotator need not be a
medical expert to be able to identify the according positions in a CT scan.

In the next step, the annotation using the annotation tool and the land-
mark information were combined. Each slice, for which a landmark was
identified has 2 labels: the z-value ∈ [0; 1] from the manual annotation and
the landmark label. In order to map this annotation back into the domain
[0; 1] the z-value from the standard annotation tool. Vice versa, each landmark

2In neck scans: cranial crista galli, cranial sella turcica, cranial dens axis, caudal plate
of cervical vertebrae #4, caudal plate of cervical vertebrae #7.
In thorax scans: cranial sternum, caudal xiphoid process, caudal plate of thoracic vertebrae
#12, sacral promontory, caudal os coccygis.
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Figure 4.5: Annotation tool

has 1 . . . n different z-values (n being the amount of CT scans).

After the annotation, each land mark is projected to a single z-value by
averaging all z-values of this landmark. The position of the slices between
succeeding land marks is then interpolated linearly. An illustration of the
process is shown in Figure 4.6.

4.7.3 Multi Represented Descriptor

In the following, the evaluation of the Multi Represented (MR) Descriptor
(Section 4.4) is explained. First the method is evaluated by using a single
representation only. Then the effect of combining different representations
is shown and the influence of the parameter k of k-NN regression on the
accuracy is discussed. Afterwards a discussion about the impact of reducing
the dimensionality of the feature vectors using principal component analysis
(PCA) on accuracy and runtime is done. Finally, it is shown that this method
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Figure 4.6: 1: 4 volume scans (left) are annotated with 2 different landmark
labels (a = red, b = blue). 2: The height value for each label is averaged
so that each label has a single height value (za, zb). 3: The height values of
the slices annotated with land marks are updated to za, zb. Height values of
slices without land mark annotations are interpolated linearly.

performs better than the approach shown in [43] in the case of 44mm query
volumes.

Single Representations

Before explaining the use of multiple representations, single representations
should be evaluated first. Figure 4.7(a), shows the error histograms of both
PHoG and Haralick features, both with and without an applied bounding
box. In spite of achieving quite acceptable error rates in the area of the head
(< 3 cm), there are strong errors in the region of the shoulders (> 5− 10 cm)
and in the lower thorax (up to 25 cm). Also it seems that both PHoG
and Haralick features perform comparable if the bounding box detector was
applied. Nevertheless, the prediction error in the area of the shoulder (at
about x = 25) is larger than 5 cm in both representations.

An interesting observation at this point is, that it cannot be said that
the application of a bounding box clearly impacts the prediction result in
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Figure 4.7: Comparison of single feature representations. (BB) indicates
that features were extracted only from the region defined by a bounding
box, (no BB)indicates that the whole image is used for the feature extraction.
Ref. 44mm in (b) shows the CDF given in Feulner et al [43] for 44mm
volumes. The x-axis in (a) show the body position in cm relative to a body
height of 180 cm with 0 indicating the top of the head.
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Figure 4.8: Comparing feature representations: (BB) indicates that features
are extracted only from the bounding box. (no BB) indicates that feature
extraction is done on the complete image. Ref. 44mm in (b) shows the CDF
used in [43] for 44mm volumes. The x-axis in (a) shows the body position in
cm relative to a body height of 180 cm with 0 indicating the top of the head.
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Figure 4.7(b). In case of the Haralick features for example, the bounding box
raises the error in the neck area by about 2 cm but improves the detection
in the lower thorax. In case of the PHoG features, the application of the
bounding box seems to have positive impact in most of the body areas.

Concluding this setting, it can be said that using one representation alone
might not perform very well as this always implies that a higher error rate
must be accepted in some other body regions compared to another feature
representation. remarkable is the fact that the features where the bounding
box was applied are already outperforming the volume set approach shown in
[43], which can be seen in Figure 4.7(b).

Combinations of Features

Motivated by this findings, several combinations of the above representations
were evaluated. In order to avoid overloading Figure 4.8(a) and 4.8(b), only
three combinations are shown which realize the worst, medium and best
combinations according to their mean errors. The mean error values of the
remaining combinations can be seen in Table 4.3.

Comparing the combination of PHoGs and Haralicks with bounding box
from Figure 4.8(a) with the single representations in Figure 4.7(a), it is
obvious that the multi-represented approach can enhance the accuracy of the
method. Nevertheless, the error in the shoulder region is still comparatively
high compared to the neighboring regions.

In [40], this approach was evaluated on a much smaller data set. In
this case it was observed that the prediction result could be improved even
further if the Haralick texture features were obtained once with and once
without the bounding box detector being applied, so that the final descriptor
consisted of three feature vectors. The same configuration in this case yielded
emean = 3.16 cm which is also very competitive and only slightly better than
the combination of just two representations.

The cumulative distribution function (CDF) describing the error prob-
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Table 4.3: Error measures for all tested combinations of representations.
(BB) and (noBB) indicate the area from which the features were extracted.

Representation(s) Mean Error Std. Dev.
PHoGs (BB) 4.31 cm 7.39 cm
PHoGs (noBB) 8.84 cm 11.49 cm
Haralick (BB) 3.93 cm 7.07 cm
Haralick (noBB) 5.89 cm 9.17 cm
PHoG/Haralick (BB) 3.03 cm 6.02 cm
PHoG/Haralick (noBB) 5.87 cm 10.05 cm
PHoG/Haralick (noBB, BB) 3.75 cm 7.32 cm
PHoG/Haralick (BB, noBB) 3.74 cm 7.55 cm
PHoG/2xHaralick (noBB, BB, noBB) 3.74 cm 6.87 cm
PHoG/2xHaralick (BB, BB, noBB) 3.16 cm 7.81 cm
2xPHoG/Haralick (noBB, BB, noBB) 4.12 cm 8.65 cm
2xPHoG/Haralick (noBB, BB, BB) 3.25 cm 6.85 cm

ability in Figure 4.8(a) leads to the observation, that the combination of
the representations combines the positive characteristics of the single repre-
sentations. The findings from [40] on a smaller data set also support this
theory.

Impact of Parameter k to Accuracy

In the following, the impact of the Parameter k on k-NN regression is dis-
cussed. In Figure 4.9(b), the influence of k is measured by using on the best
combination evaluated in the section above. It can be seen that the effect of k
is small in the range between 3 and 5 whilst emean begins to increase slightly
for k > 5. The decreasing performance can be explained by the number of
scans in the database that are used in the knn search. Regarding neck scans
for example, only 37 scans (38 neck scans excluding the query scan) can even
provide true hits. Thus drawing a large number k from 37 scans obviously
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increases the error rate at a certain level of k.

Impact of dimensionality reduction to accuracy and runtime

Regarding the dimensionality of the extracted feature vectors (1 690 in case
of Haralick, 182 in case of PHoG) it is obvious that the system cannot
easily be supported by the use of index structures due to the well-known
curse of dimensionality. Even though all experiments were run in main
memory, the support of index structures was kept in mind. The computational
cost for distance calculations of course also decreases with the reduction of
dimensionality - by the price of accuracy, which should be evaluated in the
following experiment which is illustrated in Figure 4.9(a). All experiments
were run multi-threaded on a 3GHz Intel Xeon 5365 dual quad core with the
given run times denoting the overall run time per experiment.

For the reduction of dimensionality, the well-known principal component
analysis (PCA) was employed. As expected, the runtime scales almost linearly
with increasing number of dimensions. At the same time, the mean error
decreases significantly with a rising amount of dimensions until about 50
dimensions are reached. Though later on, there is still a decrease of the mean
error, the improvement is almost negligible. Thus 50 dimensions were chosen
for all experiments in Figure 4.7, 4.8, 4.9(b) and Table 4.3.

4.7.4 Radial Descriptor

In the following, the evaluation of the Radial Descriptor (Section 4.5) is
explained. For comparison reasons, the method proposed in Section 4.4 is
referred to as the MR-Descriptor.

Average Error per Body Region

To measure the accuracy and precision of the radial descriptor, the mean error
emean and standard deviation σ of the prediction were measured. Applying
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the prediction method introduced in Section 4.5.3, the mean error and the
standard deviation could be reduced to emean = 1.76 cm and σ = 2.74 cm.
Compared to the MR-Descriptor, this means a reduction of the mean error
and standard deviation by a factor of almost 1.7× and 2.2× respectively (cf.
emean = 3.03 cm, σ = 6.02 cm). Table 4.4 illustrates the improvement.

Table 4.4: Error values of the MR-Descriptor compared to the improved
Radial Descriptor.

emean σ

MR-Descriptor 3.03 cm 6.02 cm
Radial Descriptor 1.76 cm 2.74 cm

The improvement of σ is visualized by the box plots of Figure 4.10: It
can be seen that the upper whiskers in the lower diagram of Figure 4.10 are
clearly lower throughout the whole dataset than in the case of the previous
MR descriptor. The improvement of emean is most significant in the areas
between 0-10 cm (representing the head) and > 70 cm (region of the hips).
Also, the decrease of error variance and thus the probability for larger errors
can clearly be seen in this figure, especially in the regions between 20 – 30 cm
and > 70 cm.

Cumulative Distribution Function (CDF) of ε:

In order to evaluate the distribution of the error value, the cumulative
distribution function (CDF) of ε, FE(ε) = F (E ≤ ε) is calculated. Comparing
to the MR-Descriptor, an improvement on the complete CDF could be
observed as the probability for errors less than 1 cm (FE(≤ 1 cm)) was raised
from 0.3 to 0.5. FE(ε) ≥ 0.9 was hit at ε = 3.5 cm for the radial descriptor
and ε = 8 cm for the MR-Descriptor. This means that 90% of the observed
errors were less than ±3.5 cm while the MR-Descriptor produced errors up
to ±8 cm with the same probability. The complete CDF can be seen in
Figure 4.11(a).
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Figure 4.10: emean for both descriptors. The x-axis displays body regions
of 1 cm width. The y-axis displays the amount of errors in cm. The dashed
black lines indicates the 90% error quantiles. The red and blue dashed lines
in (b) indicate the 90% and 95% quantiles from the MR-Descriptor for easier
comparison. The box plots show the 0, 25, 50, 75 and 95% quantiles of the
according descriptors.
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Figure 4.11: CDF of errors from the radial descriptor (red line) compared to
the MR-Descriptor (a) on the full data set. (b) compares the radial descriptor
(1 slice as query) to [43] (4.4 cm query volumes) (b) on all volumes containing
the required landmarks.
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Accuracy

Comparing the scatter plots of Figure 4.12 it can clearly be seen that the result
of the localization is much more stable in Figure 4.12(b) than in Figure 4.12(a).
Especially large errors in the region [0 cm, 20 cm] and > 75 cm could almost
be eliminated. The problematic regions [20 cm, 30 cm] (shoulder) and [60 cm,
75 cm] (abdomen) can still be identified as a source for larger errors but the
overall amount of errors in these regions was also lowered significantly (cf.
CDF in Figure 4.11(a)).

The approach was also compared to the work shown in [43]. As their
proposed algorithm is designed for query volumes instead of query slices, the
smallest sub volumes (4.4 cm) were chosen for their algorithm and single slice
queries for the radial descriptor in order to have a setting which provides the
best possible comparison. This means of course, that the radial descriptor is
using less slices and thus less information for the retrieval. Also, the approach
of Feulner et al is based on landmarks, so that the data set had to be reduced
to 17 volumes (12 male, 5 female, 6 547 slices) as these were the only volumes
on which the according landmarks were detected. In Figure 4.11 the CDFs
for both approaches can be compared. It can be seen that the break even
for the radial descriptor is at 4.5 cm. In case of ε ≤ 4.5 cm, the approach
of Feulner et al performs better. Nevertheless ε ≤ 5 cm are observed with
a probability of 0.9, whereas the approach of Feulner et al yields the same
probability at 6.5 cm. This means that the amount of larger errors is smaller
in the case of the radial descriptor even though only a single slice is used as a
query.

Processing speed:

Comparing the processing speed, it could be shown that the extraction
process is 1.6× faster than in the case of the the MR-Descriptor, if the full
MR-Descriptor is used and even 1.9× faster, if the MR-descriptor is reduced
by a sampled PCA to achieve an optimal result. In seconds, this means
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Figure 4.12: Plots comparing the localization quality of the MR-descriptor
(top) to the Radial Descriptor (bottom) with each pixel identifying the result
of a prediction. The x-component of a pixel denotes the true position of an
image, the y-component describes the result of the localization.
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Figure 4.13: Mean error and standard deviation (y-axis) between MR-
descriptor and the radial descriptor according to k2, which is displayed on
the x-axis.

that the average time for registering a single unprocessed DICOM image
with the radial approach took 0.62 s while the processing of an image with
the MR-descriptor required 1.02 s without and 2.03 s with PCA respectively.
Testing the impact of the parameters k1 and k2 on the runtime did not show a
significant difference. This can be explained by the fact that several thousand
distance calculations during the search consume much more processing time
than the following filtering step.

Impact of k1, k2:

Finally, also the impact of k1 and k2 on the accuracy and precision was
tested. As it can be seen in Figure 4.13, both variables k1 and k2 only have
a small impact on both the mean error and the standard deviation in this
method. In contrary, the MR-Descriptor shows a clear dependence on k.
The robustness against k is another advantage as the search process can be
simplified accordingly without significant loss of accuracy.
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Tilted Slices

Especially in case of head CT scans it is not uncommon that the rotation
axis is not paraxial to the x,y-plane but tilted by a certain degree. Reasons
for this can for example be that the radiation to which the brain is exposed
during a regular head/neck CT scan should be minimized as much as possible.
In such cases, the recording plane is tilted to a certain degree θ from the
orthogonal plane.

Data Set: As all volume scans of the present data set were recorded as
untilted scans, tilted scans had to be simulated by interpolation: Let Iz be
a single slice of the volume scan comprising n CT slices, with z denoting
the index of the image z ∈ [1;n]. Then the complete volume scan V is first
reconstructed from the 2D CT slices.

Afterwards, n tilted slices are computed by projecting the voxel data
of V on tilted planes I tz. Each I tz is located at the same z-position as the
corresponding slice Izwith a tilt angle θ around the x-axis of the patient’s
body. Of course, the image qualityof the resulting interpolated slices heavily
depends on the resolution along the z-axis of the orinial scan. Higher resoluted
scans oviously produce images with more detail, whereas scans with very few
slices produce interpolated images with low detail.

After computing the tilted slices I tz of a volume scan, the feature extraction
process described in Section 4.5.2 is applied without changes, same as the
prediction step.

Evaluation: Even though the tilted slices are only interpolated and not
the result of real tilted CT scans, the radial descriptor was applicable and
produced reasonable position predictions. As expected, the amount of the
tilt angle θ correlates to the impact of the prediction quality of the algorithm.
It can be seen that the impact to both emean and σ are almost linearly with
increasing tilt angle θ. Yet the impact is just about 5mm in case of a tilt
angle of 30°and less than 2mm in case of a θ ≤ 10°. The precise numbers can
be seen in Table 4.5, a diagram visualizing the numbers is given in Figure 4.14.
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Table 4.5: Mean error and standard deviation w.r.t. the tilt angle θ.

tilt angle θ 0° 5° 10° 15° 20° 25° 30°
emean (cm) 1.7 1.8 1.8 1.9 1.9 2.1 2.2
σ (cm) 2.7 2.8 2.9 3.1 3.0 3.3 3.2
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Figure 4.14: Impact of tilt angle to localization

4.7.5 3D Detection

Do demonstrate the improvement of the 3D technique described in Section 4.6,
the results are compared to the results obtained from Section 4.5.

The results shown in Figure 4.15 describe that considering two adjacent
slices already made a noticeable difference. As expected, the choice of f(x)
also becomes more significant with increasing value of m as more and more
information has to be aggregated into the final feature vector. It can also
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be seen that all functions except fGaussian outperform the 2D feature vector
(black line) for all values of m in terms of both, accuracy and precision.

Nevertheless finverse-squared converges to the performance of the 2D feature
vector in case of m ≥ 5 in both accuracy and precision, while fGaussian

increases precision but looses accuracy at m ≥ 8. This function shows that
an improvement in the standard deviation σ does not necessarily have to
result in better prediction accuracy, as can be seen for m ≥ 13. The errors
caused by using fGaussian for example were bigger but the error values were
less scattered with likely less small error values - or in other words, fGaussian

provides higher precision by the loss of accuracy.

Nevertheless, all other aggregation functions improve the prediction result.
Considering both emean and the standard deviation σ, the best results were
achieved with flinear ((4.11)) and fpolynome ((4.10)). Both achieved a mean
error of emean = 16.5 mm with a standard deviation of σ ≤ 32.4 mm compared
to emean = 17.6 mm and σ = 35.9 mm in the case of pure 2D features. These
two function thus achieved an improvement of 6% and 10% respectively.
Even though the improvement concerning the mean error is appreciated, it is
the improvement of the standard deviation that is even more important as it
increases the precision of the method and reduces larger errors.
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Figure 4.15: Mean error and standard deviation of cross-validation using
3D features compared to the pure 2D features (black line) depending on the
margin m and the weighting function f(x).
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Chapter 5

Vertebra Detection

5.1 Introduction

Detecting the position and the shape of the spine and single vertebrae is a
useful task for various purposes in medical imaging. In spine reconstruction,
information being extracted from a body scan is used to build a 3D model of
the spine allowing the examination of spinal maladies like scoliosis. Further
areas are not directly interested in the particular characteristics of the spine
but rather employ the gained information to acquire positioning information
within a scan. The position and the form of the spine are well-suited for
determining the position of the patient on the table because vertebrae have
different shapes in varying parts of the body. Furthermore, bone structures
are well suited for automatic detection tasks due to their clear and invariant
display in CT scans.

To solve these problems the research community proposed several methods
for detecting, segmenting, analyzing and reconstructing meshes of vertebrae
and the complete spine being based on a complete 3D body scan. However,
there are applications where a limited number of CT slices is available. For
example, the slices being contained in a medical record which is sent to
a specialist without access to the complete data in the PACS. To provide
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valuable information in this or similar applications, the focus in this work
is set on detecting the vertebrae in the smallest possible input, a single 2D
image.

The task for detecting the position of the vertebrae in 2D CT slices on the
transverse plane will now be issued in the following sections. The information
being derived by this approach can be employed for localizing the center of the
body w.r.t. the position of the patient on the examination table. Additionally,
this method is suitable for distinguishing the cervical-, thoracic- or lumbar
spine area which yields value information about the body regions of the given
image. Also, the method shows reliable results even if larger regions of the
considered body scan are available.

To make this method suitable for the named applications it was designed
to meet several important requirements: First, it is not necessary to adjust
parameters to the characteristics of the given scan. Furthermore, the method
works fully automatic, i.e. the system marks the spine in the image without
any user interaction. Finally, the method works efficiently without requiring
large amounts of main memory which makes it a suitable component for
larger imaging systems.

Comparable to the slice localization approach in Section 4, the method
for the localization of the vertebra in 2D CT images was developed in two
stages. First, the related work of the research community according to
this topic is reviewed in Section 5.2, afterwards the first stage is presented
in Section 5.3 and demonstrates the general applicability of the employed
techniques. Section 5.4 improves this first stage by applying techniques to
localize the initial position even better and afterwards refine the position by
a dynamical of the result window that indicates the position of the vertebra.
The data set and according experiments for both approaches will be presented
in Section 5.5

The methods proposed in this chapter are (to be) published in [55] and
[52].
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5.2 Related Work

In [130, 140, 141, 142], Vrtovec et al construct 3D shape models of the spine
and analyze the spinal curvature in CT images. Stern et al determine the
spinal centerline in both CT and MR volume scans in their works [128, 129].
There are also several methods aiming at the detection and segmentation
of the spine [79, 81, 150]. Nyúl et al [106] proposed methods for detecting
the spinal cord and the spinal canal in 3D CT scans by using deformable
fences or models. Methods being based on 3D MR scans are proposed by
Schmidt et al [122], Corso et al [30] and Huang et al [68]. Though each of
these methods are reported to achieve convincing results, all of them require
a complete 3D volume scan. Despite the different nature of all approaches,
a major disadvantage of the above methods is that they are all dependent
on the availability of extended volume scans. While processing the complete
scan in order to extract new information often yields good results, there exist
use cases where only very small volumes or even single slices of a scan are
available. For example, the available slices are taken from a medical record
being send to a specialist without access to the complete data in the PACS.

When considering this more challenging setting, the number of related
methods is considerably smaller. Rangayyan et al [116] for example use a
Hough-Transformation to detect the spinal canal. However, the proposed
method relies on reducing the the search space to an area that should not be
larger than a region comprising the vertebra.

5.3 Static Detection

5.3.1 Introduction

In this section, the first stage of the development of a new method for
detecting the position of the vertebrae in 2D CT slices on the transverse plane
is proposed. Especially in applications where the volume of the available
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scan is rather small or even a single slice, this method generates valuable
information which can be employed for navigation and annotation purposes.
For example, within the 2D slice the vertebrae is important as an orientation
point for determining the center of the body w.r.t. the particular position of
the patient on the table. Furthermore, it is possible to classify the detected
vertebrae on the image into cervical-, thoracic- or lumbar spine area in order
to determine the body region in which the available volume is placed in.
Another use of this detector is as a fully automatic preprocessing step for
constructing a 3D model of the spine within the available scan volume.

This new method has several characteristics allowing a broad use in vari-
ous applications. First of all, the method allows reliable vertebrae detection
without time-consuming parameter tuning. Since this method is fully auto-
matic and parameterless, it is not necessary to adjust the parameters to a
particular volume before receiving usable results. Furthermore, the detector
is based on a directed readjustment step which avoids checking for the target
region at any possible position on the 2D slice. As a result, the vertebrae is
detected very efficiently allowing to apply the detector on large data sets or
in interactive applications. A final useful characteristic of this approach is its
low memory consumption making the detector a suitable component of more
sophisticated imaging systems.

Technically, this method employs four steps to determine the position
of the spine. The first step comprises several typical preprocessing steps.
Then, possible candidate locations of the vertebrae are detected by extracting
interesting pixels from a bone density map. Afterwards, image features are
extracted for the candidate regions surrounding the interesting pixels and
compared to an annotated sample set in order to select the most promising
candidate region for further processing. After the best candidate region is
identified, the result region is iteratively readjusted in a refinement step until
the method converges to a local optimum.

The rest of this section is organized as follows: The algorithm will be
described in Section 5.3.2, followed by the description of the experimental
setting and the achieved results in Section 5.5.2.
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5.3.2 Algorithm

In this section, algorithm for detecting the vertebrae within a single 2D slice
of a CT scan is described. To determine the most relevant region within the
a given image, four consecutive steps are performed which will be described
in the following subsections. After describing the basic steps of the algorithm,
some techniques for improving the processing time are discussed.

Preprocessing

The first step performs several preprocessing steps to make the relevant
information easier to detect. Thus, the image is reduced to the region of
interest by cutting off empty borders. A border is thereby defined as block
of at least 20 lines (columns) where each line(column) contains at least 100
consecutive pixels with an HU value of more than −600 HU. After detecting
the borders on all sides of the body, the region of interest is defined as the
outline of the joined borders. Afterwards, the image is scaled to a size of
512×512 pixels and all previously applied windowing filter is removed. In
order to attenuate the effect of noise pixels which are very likely in CT scans,
a Gaussian kernel of size 5×5 pixels and σx,y = 1 is applied to the image.
Figure 5.1 shows the result of the preprocessing step.

Candidate Selection

In the next step, a so-called bone density map is created which is used to
identify interesting image regions that might contain the vertebrae. Therefore,
the set of bone pixels D ∈ [1 . . . 512]× [1 . . . 512] is determined by selecting
pixels having a HU value in a range of 500 – 1000HU, so that

D = {(x, y) ∈ I | p(x, y) ∈ [500, 1000]} (5.1)

where I represents the slice under consideration and p(x, y) denotes the HU
value of a pixel at location (x, y).
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Figure 5.1: Image after pre processing and body detection.

For each bone pixel, the so-called bone density of a pixel is determined
by summing up the Euclidean distances to all other bone pixels of the image
w.r.t. the pixel coordinates. Formally, the bone density of a pixel at position
(x, y) is defined as in (5.2). The densest bone pixel is thus defined as the pixel
(x, y) ∈ D with the lowest value of density(x, y) (cf. (5.3)).

density(x, y) =
∑
d∈D

√
(x− dx)2 + (y − dy)2 (5.2)

(x, y) ∈ D | ∀(u,w) ∈ D : density(u,w) ≥ density(x, y) (5.3)

The bone density map is constructed by adding an entry for each bone
pixel in combination with its bone density. Afterwards, the pixels of the bone
density map are ordered in ascending order w.r.t. the bone density. In other
words, the pixels denoting the highest bone density are sorted on top of the
bone density map.
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In order to obtain candidate regions from the bone density map, the first
pixel of the list is expanded to a region of 84×68mm which corresponds to
twice the average size of an annotated spine region in the sample database of
annotated images. The doubled size of the box is used because the annotation
comprises only the vertebrae. Yet, it is required to include the spinous process
as well as this region shows a very significant shape w.r.t. the spinal region it
is located in.

Regarding the shape of a vertebra, the highest bone density is expected
in the part of the vertebral body. As it is desired to extract image features
describing the vertebral body as well as the spinous process, the box is not
expanded equally in all directions. Instead the box’s width is expanded in
both directions but the height only downwards in order to raise the chance
that the box also covers the complete spinous process. An illustration about
the expansion of the box is shown in Figure 5.8 in Section 5.5.2 where the
initial point of the bone density map is located at the point in the center of
the inner rectangle which represents the average annotation box.

Afterwards, all other entries in the λ-neighborhood Nλ of 42×34mm
(which is the size of the average annotation) of the top entry are removed
from the list in order to avoid the generation of regions being too similar to
each other (cf. (5.4), λx = 21mm, λy = 17mm). This step is repeated five
times in order to obtain the five most promising candidate regions from the
bone density map. Figure 5.2(a) illustrates the considered bone pixels and
Figure 5.2(b) displays the selected top 4 candidate boxes.

Nλ(x, y) = {q ∈ D | d1
x(p(x, y), q) < λx ∧ d1

y(p(x, y), q) < λy} (5.4)
d1
x(p, q) = |p.x− q.x| ; d1

y(p, q) = |p.y − q.y| (5.5)

Feature-Based Region Prediction

In the next step, a feature descriptor is derived for each of the remaining five
candidate regions. In order to consider the spatial distribution, a candidate
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(a)

(b)

Figure 5.2: Bone density map (a) and candidates selected from the bone
density map (b).

region is divided into nine disjoint, equally sized sub regions. For each of
these sub regions, a feature descriptor is derived and the descriptor for the
complete region consists of the concatenation of the descriptors of its nine sub
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regions. In this work, with three types of image descriptors were evaluated,
i.e. greyscale (HU value) histograms, Haralick texture features and pyramidal
histograms of oriented gradients (PHoGs). The performance of each of these
descriptors is compared in the next section.

Figure 5.3: Candidate region selected by the feature-based prediction step.

HU Histograms: In the case of HU histograms, 16 uniform intervals
in the scale of Hounsfield Units (HU) were distinguished. For each bin in
the histogram, the number of pixels having a HU value in the corresponding
interval were counted. Thus, 16 values for each sub region creating a feature
vector of 16 · 9 = 144 dimensions for the complete descriptor.

Haralick Texture Features: As it was desired to match against image
patterns of the vertebrae, the algorithm was also tested with the well known
Haralick texture features [63] which also proved valuable information in
Section 4.4. For the proposed method, all 13 Haralick features for five
different distance values (1, 3, 5, 7, 11) were created. This computation is
done for each of the 9 subregions separately. The resulting feature vector
contains 9 · 13 · 5 = 585 features. As stated in Haralick et al [63], some of the
features are highly correlated. This means that the resulting feature vector
contains a lot of redundant information in its full representation. In order
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to minimize these redundancies, a principal component analysis (PCA) was
applied and thus the dimensionality of the texture descriptor was reduced to
30 dimensions.

Histograms of Oriented Gradients To extract the gradient features for
a candidate region, important edges Pedge were extracted by applying the well
known Canny operator [28] C. Important edges are defined by all locations,
where the Canny operator computes values greater than zero (cf. (5.6)). In
the next step, the angle of the gradient G(x, y) is computed at the locations
of important edges (cf. (5.7)).

Pedge = {(x, y)|C(x, y) > 0} (5.6)

G(x, y) = arctan ∂y
∂x

; where (x, y) ∈ Pedge (5.7)

Afterwards, a 12 bin histogram is built over all values of G(x, y) within
the complete candidate region and for each of its nine sub regions. The
histograms are then serialized generating a (9 + 1) · 12 = 120 dimensional
vector. This representation is referred to as PHoG (pyramid histograms of
oriented gradients).

Candidate Selection To determine the most promising of the five selected
candidate regions, a sample set of manually annotated regions containing the
vertebrae is employed. Each sample in the database is described by the same
feature descriptor as the candidate region. To compare the d-dimensional
feature descriptors the Manhattan distance (5.8) is used.

distManhattan(u, v) =
d∑
i=1
|ui − vi| (5.8)

The most promising candidate region is determined by calculating the
nearest neighbor of each candidate in the sample set. The candidate region
having the smallest Manhattan distance to its nearest neighbor in the sample
set, is then selected as result region (cf. Figure 5.3).
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5.3.3 Refinement

After selecting the best of the initial candidate regions, the algorithm proceeds
with an iterative optimization step moving the result to an local optimal
position. In each step, new candidate regions are created by moving the
position of the currently best candidate region by 5mm to the top, bottom,
left and right. For each of these new candidates, the distance to the near-
est neighbor in the sample set is computed and the one with the smallest
Manhattan distance is selected. The algorithm terminates, if there is no new
candidate region having a smaller distance to its nearest neighbor than the
result region in the previous step. Figure 5.4 shows the result region before
(cf. Figure 5.4(a)) and after (cf. Figure 5.4(b)) the refinement step.

(a) (b)

Figure 5.4: Image before (a) and after (b) the refinement step. The green
boxes denote the (doubled) annotation and the red boxes indicate the current
result box of the algorithm.
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5.3.4 Performance Tuning

In order to improve the processing speed of the algorithm, it is important
to accelerate the computation of the bone density map, as it has a runtime
of O(n + m2) with n being the amount of pixels of the image (512×512 =
262 144 in the case of the images in this data set) and m being the amount of
pixels indicating bone structure. One way to improve the calculation speed is
to rescale the image by a factor of 0.5 first. This way the amount of ordinary
pixels and bone pixels can be significantly reduced. A further optimization
employs the observation that the analyzed images are recorded while patients
are lying on their back. Thus, it can be assumed that the vertebral column is
located in the mid third of the image. Thus, the processing time is reduced to
O
(

1
12n+ 1

16δ
2m2

)
with δ ∈ [0; 1] denoting the amount of bone pixels within

the mid third of the image compared to the total amount of bone pixels.

5.4 Weighted Detection with Dynamic Resize

5.4.1 Introduction

In this section, the second stage of the development of a new method for
detecting the position of the vertebrae in 2D CT slices on the transverse plane
is proposed. Regarding the observations and experiences that were made
during the work of the static detection in Section 5.3 there were some issues
that motivated the improvement of the method.

Some of these issues that were experienced in stage one and were addressed
in stage two now were for example that – according to radiologists – almost
all CT scans are recorded with the patient being in a dorsal position. The
intention was, that this information should be regarded either during the
creation of the bone density map or at the time of the candidate selection (cf.
Section 5.3.2).

Technically, this extension to the method described in Section 5.3 employs
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five steps. In the first step, the input image is preprocessed. Then, the system
extracts relevant pixels and weights each pixels. Both, the search mask for
determining the relevant pixels and the weighting functions are learned from
an image repository containing slices with spine annotations. In the next step,
candidate locations in the selected area are extracted. Afterwards, image
features for each candidate are extracted and the best candidate locations are
selected for employing instance-based learning. In a final step, the annotation
box around the best candidate location is fitted to the boundaries of the given
vertebra.

The contributions of this method are an improved search mask for the
localization of candidate locations of the vertebrae, as well as a new weighting
method on the search mask that supports the interesting point detection. Also,
an improved algorithm to define the region of the vertebrae more precisely
and finally one improved and one new quality measurement for the validation.
These quality measures were needed as the former quality measure in (5.18)
was not applicable for the case of the refined result boxes.

The rest of this section is organized as follows: The algorithm will be
described in Section 5.4.2, followed by the description of the experimental
setting and the achieved results in Section 5.5.3.

5.4.2 Algorithm

The detection of vertebrae consists of the five major steps, which are: image
preprocessing, region extraction and weighting, candidate generation, candi-
date selection and refining the best candidate. An overview of the parameters
that will be used in the following section can be found in Table 5.2.

Preprocessing

In the first step, the original CT image I is rescaled to a unified width and
height of 512× 512 pixels. Afterwards, a 2D Gaussian kernel G(x, y, σ) with
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σx,y = 1 is applied to I. The Gaussian blur has the effect of reducing noise
in the CT slice. This noise can be caused by a high resolution along the
z-axis of the body, which results in very thin CT slices or in case of low-dose
CTs. With the given trend to both higher resolution and lower x-ray doses
(low-dose CTs), this step will become more and more important in the near
future.

Region Extraction and Weighting

On a transversal CT slice, the spine is always located in the lower middle
region of the image if the scan was recorded in a dorsal position of the
patient (which is the case in a huge majority of the cases, according to some
radiologists). Thus, the image I is limited to the sub region which possibly
could contain the spine by applying a search mask ρsm.

In contrast to the method in Section 5.3, where the search space was set
heuristically to 1

3 of the patient’s body, ρsm is determined empirically based
on a training database DB. As a result, the relevant region of the image can
further be restricted without losing relevant information.

In particular, the training database DB consists of a set of CT volume
scans Vj ∈ DB where each volume scan is represented by an ordered set of
images Ii,j ∈ Vj (i ∈ [1, n]). Additionally, each vertebral body of a volume
scan is annotated with a paraxial bounding box representing the ground truth.
Thus, each Ii,j ∈ Vj refers to a set Mi,j = {MBR(Ii,j)} that contains the
minimum bounding rectangles (MBR) which are generated by the intersection
of the annotation boxes of Vj with the image Ii,j . The cardinality of Mi,j can
thus be [0 . . .m] where m is usually no more than 3. |Mi,j| = 0 occurs, if
the CT slice displays the section between two vertebral bodies, so that only
a spinal disc is visible. |Mi,j| = 1 is the obvious case where the slice shows
exactly one vertebral body. |Mi,j| > 1 occurs, if the rotation of the spine is
large enough so that a slice along the transversal plane shows not only one
single vertebral body but also parts of a preceding or succeeding vertebral
body.
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To define the search mask ρsm, the union U of all sets of MBRs Mi,j of
all volumes Vj ∈ DB is created. Afterwards, the convex hull of the set U is
computed using Graham’s scan algorithm [56]. ρsm is then defined by:

ρsm = ConvexHull(U) (5.9)
U = {∪Mi,j | Mi,j = ∪MBR(Ii,j ∈ Vj) ∧ Vj ∈ DB} (5.10)

This step requires that DB is large and diverse enough. Otherwise, ρsm will
be too selective and too small so that no correct points of interest can be
selected in the following steps. Building the convex hull around the set of
ROIs is used to avoid that ρsm is overfitting to the database.

Candidate Generation

The method aims to detect points within the image that are candidate
locations for a vertebra. Compared to its surrounding, a vertebra itself is
a very locale bone structure. Thus, a bone density map is created for all
suitable bone pixels bx,y ∈ ρsm. Suitable bone pixels are all pixels bx,y with
an HU-value in a certain HU window [βlower, βupper]. For this algorithm, the
window was lowered to a more sensitive HU range for compact bones, so that
βlower = 300 HU and βupper = 1000 HU [118]. Spongy bones, which can be
observed in an HU range of 50 – 200HU can also be observed in the inner
part of the vertebral bodies of elderly patients. Nevertheless, the outer part
of the vertebral bodies is typically compact and thus in a higher HU range,
so that pixels with less than 200 HU need not be taken into account in this
case. Furthermore, a too low value for βlower can lead to an increased rate of
false candidates. The set D of suitable bone pixels is thus defined as

D = {(x, y) | p(x, y) ∈ ρsm ∧ p(x, y) ∈ [βlower, βupper]} (5.11)

where p(x, y) denotes again the HU value at location (x, y) and px, py the x-
and y-coordinates respectively.

This is almost the same definition as for the bone density map in (5.2)
(Section 5.3.2). The differences are the restriction to the search mask ρsm and



80 5 Vertebra Detection

the employed distance metric. In the former definition of the density map, the
L2 distance was employed. This was changed to the L1 metric due to better
computation performance. Same as in Section 5.3.2, the bone pixels with the
smallest accumulated distances D(x, y) have the highest bone density because
they are closer to other bone pixels than the pixels with larger accumulated
distance values.

As it was experienced in Section 5.3, this rather simple distance map still
leads to false candidate detections in the area of the sternum, the clavicle and
the hips. In these cases, very dense bone structures extend into the search
mask and might be selected as false candidate locations. A further refinement
of the candidate region is not an applicable solution as the mask will either
overfit or crop other true candidates from the search mask. For this reason,
it is proposed to apply a weighting function w which is also derived from the
training database DB:

w(x, y) = arg max(1, log(|R(x, y)|)) (5.12)
R(x, y) = {Ri ∈ ROIDB|(x, y) ∈ Ri} (5.13)

where ROIDB is the set of all annotation ROIs in the database DB and
R(x, y) the set of all ROI covering the location (x, y).

Thus, w(x, y) can be regarded as a measure for the likelihood that location
(x, y) displays a true candidate. The logarithm function is applied as a
damping function in order to reduce the impact of pixels with large values
of |R(x, y)| and thus to avoid overfitting. In general, any kind of monotone
damping function with a co-domain of [1,∞[ would be applicable. The
weighting function is then applied to the distance map D by a pixel wise
multiplication (5.14) building the weighted distance map Dw. An illustration
of w can also be seen in Figure 5.5.

Dw = D ◦ w (5.14)
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Figure 5.5: Illustration of the weighting function w. The height value
denotes the value of w(x, y). The bottom right of the illustration represents
the bottom line of ρsm.

Candidate Selection

After the computation of the weighted bone density map Dw, the algorithm
detects the η most promising candidate locations for the position of the
vertebrae. This set will be denoted by Ccand. Simply extracting the η densest
locations from Dw is not feasible, because it is very likely that all of the η
locations are positioned within a small region neighboring the global minimum
of Dw.

This step is comparable to the candidate selection described in Sec-
tion 5.3.2. In difference to Section 5.3.2, the λ neighborhood is now repre-
sented by a circle with radius λ which is smaller than the rectangle in the
previous approach.

Nλ(p) = {q ∈ Dw | disteuclidean(p, q) < λ}; (5.15)

In order to obtain the η candidates, all pixels of Dw are ordered in list in
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Figure 5.6: The search mask ρsm (yellow line), and the densest pixels in
D(x, y) (green dots) including the λ neighborhood marked by circles.

ascending order of their bone density. Afterwards, the first pixel of the list is
removed and put into Ccand. All pixels in the λ neighborhood of this pixel are
then removed from the list. This procedure is repeated η times candidates.
The locations of the densest pixels is illustrated in Figure 5.6.

Feature-Based Region Prediction

After the extraction of the candidate locations, the image features from areas
around each candidate location are extracted and based on an instance-based
learner, the most promising location is selected.

Same as in Section 5.3.2, the features are extracted from an ROI φbox
which is is centered at each location in Ccand. The size of φbox also remains
twice the size of an average vertebral body in order to capture the information
of the vertebral body including surrounding tissue and spinous process. φbox
remains sub-divided into equally sized sub-regions from which the features
are extracted and serialized to build the feature vector φdesc(i) with i denoting
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the type of feature.

In the experiments different kinds of well known image features were
evaluated. Same as in the previous approach, HU-Histograms with 16 bins
(φdesc(1)), Haralick texture features [63] (φdesc(2)) and PHoGs (φdesc(3)) were
evaluated. Additionally to these three image features binary histograms
(φdesc(4)) and resized image regions (thumbnails) (φdesc(5)) were evaluated

After building a φdesc for each location in Ccand, an instance-based learning
is applied for the features. This is done by determining the nearest neighbor
for each φdesc ∈ Ccand in the training database DBfeat containing the feature
descriptions of the annotations by using the L1 metric. The location of the
feature vector with the smallest distance to database annotation is finally
selected as the best candidate position of the vertebrae.

Refinement

At this stage, φbox of the selected candidate describes the area which was
used for feature extraction and thus, it is about twice as large as the actual
vertebral body. This issue is addressed in this section, where the size of φbox
is reduced to fit the result box as tight as possible to the vertebral body. The
dynamic refinement algorithm reduces the width and height of φbox under
consideration of the bone density at the borders of φbox. A standardized scale
factor is not applicable in this case, because the size of the vertebrae increases
from the thoracic vertebrae to the last lumbar vertebrae. In the following,
the method for relocating the top border downwards is described. The other
borders are relocated respectively and the refinement process is applied for
each border separately.

First, an ROI of κblock pixel rows is aligned at the inner top row of φbox.
This ROI is moved downwards until each pixel row of the ROI contains at
least κrow pixels with an HU value greater than κHU or until the lower border
of φbox is reached. Thus, the y-location of the ROI can be defined as:

ROI.y = {min(y) ∈ φbox|∀rowi ∈ ROI : |p(x, yi) > κHU | > κrow} (5.16)
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The resulting region is denoted by κbox. If κbox is empty (e.g. if the above
ROI was moved beyond the opposite side), the values κblock, κHU , κrow and
κcol respectively are softened. If κbox was refined too little so that the area
decrease is less than κ% compared to φbox, the values are hardened and the
refinement is restarted in a second iteration. If the second iteration also results
in κbox being either too small or too large, κbox defaults back to the size of
φbox. Finally, it is ensured that κbox has a minimum size of κlimit×κlimit pixel
which is achieved by rescaling the width/height accordingly if width or height
fall below the limit. The default values used for the refinement including
softening and hardening are shown in Table 5.1. Illustrations of the ROIs are
shown in Figure 5.7. The pseudo code of the refinement process can be found
in Algorithm 1.

blockK

rowK      

colKcol

K
block

Figure 5.7: Parameters used in the refinement process. The column and
row on the left/bottom are omitted for simplification.

The approach proposed by Rangayyan et al [116] was also evaluated in
order to detect the spinal canal by using a Hough transformation. The
intuition was, that this information could be used to refine the position even
further. Unfortunately the method turned out to be very unstable on the
given data so that no positive contribution of the method could be observed.
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Table 5.1: Values for the refinement procedure. The upper two rows show
the default values, the lower rows show the deltas for each value which are
applied if the values are softened and hardened respectively.

κblock 8 px κrow 8 px κcol 17 px
κHU 250 HU κ% 0.04 κlimit 60 px
κblock +2/− 2 px κrow −3/+ 3 px κcol −3/+ 3 px
κHU −50/+ 100 HU

Algorithm 1 Pseudocode for the refinement process. The delta of the values
applied in the soften/hardenParameters() are displayed in Table 5.1.
κrefined ← refine(κbox)
if isEmpty(κrefined) then
softenParameters()
κrefined = refine(κbox)

else if area(κrefined) > κ% · area(κbox) then
hardenParameters()
κrefined = refine(κbox)

end if
κrefined.height← increase if width < κlimit

κrefined.width← increase if height < κlimit

result← κrefined

5.5 Evaluation

5.5.1 Data Set

In the experiments for the methods shown in Section 5.3 and Section 5.4,
real world thorax CT scans of 34 different male and female patients with
a total of 9 239 images were used, consuming more than 10GB disk space.
The scans were recorded with different CT scanners with different resolutions
along the z-axis. Thus the scans are very heterogeneous w.r.t. resolution
(along the x- and y-axis), contrast media, patients’ body size, gender and age.
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Table 5.2: List of parameters used including their meaning and measures.

αs standard annotation box
αd αs doubled in height and width
αv αs doubled in height only
φdesc(i) Type of feature
ρbox ROI used for feature extraction
λ neighborhood radius (pixels)
η maximum amount of candidates
κbox result ROI after candidate selection
κrefined refined ROI
κblock minimum of rows/columns for borders
κrow, κcol minimum number of pixels per row/column
κHU lower bound for pixel detection (HU)
κ% minimum area difference to κbox (%)
κlimit minimum width/height of final ROI
ξoverlap area overlap
ξdistance distance between centers of the ROIs

Some patients also show signs of implants which may cause disturbances and
artifacts on the image.

In order to obtain a reliable ground truth, the data set was annotated
by a clinician using the MEDICO tool [124]. For the ground truth, each
vertebral body of the spine was annotated by a single 3D paraxial bounding
box enclosing the vertebral body and a tag that identified the vertebral
body (C1-C7, T1-T12, L1-L5). The spinous processes were not included into
the annotation boxes because this would have created comparatively large
bounding boxes and also quite large overlaps between the annotations of
consecutive vertebrae especially in the area of the lumbar vertebrae. Even
though that only the vertebral bodies were annotated by enclosing boxes, it
was not possible to completely avoid an overlap between annotation boxes.
This can be explained by the fact that the annotation boxes are paraxial but
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the spine describes a curve along the z-axis of the body. Thus, the vertebrae
might be rotated to a certain degree.

In total, there were 393 bounding boxes with sizes from 22.9×17.2mm
(36×29 px) to 89.6×53.7mm (204× 120 px) and an average size of 43×36mm.
In the experiments, a cross validation on the patients’ volume scans was
employed so that it was ensured that the query image was never compared
with other images of the same scan of this patient in order to avoid a bias
towards the patient from which the query image was obtained.

5.5.2 Static Detection

Quality Measure

In order to evaluate the performance of the proposed algorithm and the
according features, an overlap O between the manually annotated box Bm

and the box Ba was defined, with Ba being determined by the presented
algorithm. The intuitive definition of an overlap

Osimple = (area(Bm) ∩ area(Ba)) /area(Bm) (5.17)

does not cope with the problem that the annotation boxes are varying in size.
Yet, this is the case as vertebral bodies are smaller in the upper part of the
spine than in the area of the lumbar spine. In contrast to the varying size
of the annotated boxes, the size of the result regions have a fixed size. The
idea to use the largest annotated box was rejected due to the large maximum
values encountered in the annotation (89.6×53.7mm) which would lead to
impractical results of very large overlaps which would always suggest a large
overlap.

Using the average box size as target size of the algorithm led to the
problem that Osimple could never reach a value of 100% in regions being larger
than the annotation even if the found region was overlapping the annotation
perfectly. To solve this problem, the overlap was defined by the ratio of the
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intersecting area relatively to the smaller of both areas (5.18):

O = area(Bm) ∩ area(Ba)
argmin(area(Bm), area(Ba))

(5.18)

Because the annotated box only contains the vertebral body itself but not
the very characteristic spinous processes, it was decided to enlarge the box
from which the features are extracted by a certain factor (cf. Figure 5.8).
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Figure 5.8: Illustration of the enlargement of the average annotation box
(inner box) by a factor f . The plus sign in the middle of the inner box denotes
the center of the enlargement process during the candidate selection.

Results

Feature Type Selection In the first set of experiments, the suitability of
the three feature representations (HU-Histogram, Haralick texture features,
PHoGs edge features) for the detection method was evaluated. Figure 5.9(a)
shows the results of these experiments. It can be seen that the orange line
indicating the HU histogram features clearly outperforms the other feature
descriptors as the histogram features always provide a higher overlap value
than the other feature types in up to 60% of the cases. Exactly 60%
overlap could be observed in 94% of the cases for both HU Histograms and
Haralick features. However, the largest overlaps were only achieved by the
HU Histograms (>88% overlap in 75% of the cases compared to 83% overlap
in case of the Haralick features).
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Figure 5.9: (a): Performance of different feature representations and the
quality of the candidate selection. (b): Precision, recall and F-measure of
the proposed algorithm using HU-histograms when classifying images into
regions of the cervical- (Cx), thoracic- (Tx) and lumbar (Lx) spine.
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Candidate selection. Figure 5.9(a) also shows the impact of the bone
density map and the initial candidate selection. The dotted purple line
indicates the performance that could be achieved if the candidate selection
would always choose the correct candidate from the candidate set. The dashed
blue line indicates a perfect match. Due to the fixed size of the box found by
the algorithm and the different size of the true annotated box, there cannot
be a 100% match in all cases.

The difference of the dotted best candidate line to the orange line of the
histogram features indicates the error being caused by the process selecting
the best candidate region. It was observed that if the best candidate region
would have been selected in all cases, the coverage of 100% was achieved in
up to 65% of the cases and a coverage of 87% was achieved in up to 75% of
the cases. The difference between the dotted and the dashed line indicates
the error which is caused by the generation of the candidate boxes.

Classification of the spine. Another experiment was conducted to check
whether the HU Histograms would also be suitable to distinguish between
cervical-, thoracic- and lumbar spine. Thus, the vertebral bodies were sep-
arated into three classes (Cx: cervical-, Tx: thoracic-, Lx: lumbar spine)
and afterwards classified each detected box into one of the three classes. To
determine the class label of a new image, the label of the closest neighbor of
the result region in the sample set was selected.

The result of this experiment can be seen in Figure 5.9(b) and Table 5.3.
It can be seen that both precision and recall are greater than 70% for all
three classes with the precision being greater than 90% in case of the thoracic-
and lumbar spine and recall being greater than 90% in case of the cervical-
and thoracic spine.

Candidate boxes As shown in the experiment above, the selection of the
correct candidate box is crucial for the performance of the algorithm. Thus,
the impact of the considered number of candidate regions (ncand) to the
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Table 5.3: Results from the classification of the found regions into the
cervical- (Cx), thoracic- (Tx) and lumbar spine (Lx).

Recall Precision F-measure
Cx 90% 83% 86%
Tx 96% 91% 93%
Lx 72% 90% 90%

performance of the algorithm was evaluated in this step.

The result of this evaluation can be seen in Figure 5.10. The fact that
the lines in Figure 5.10(a) are rather close to each other indicates that the
amount of ncand does not have a very large impact for ncand > 3. The results
displayed in Figure 5.10(b) support this assumption as there is no significant
difference in the performance for ncand > 4. Thus, all further experiments
were conducted with ncand set to 5. The reason for choosing a comparatively
small number is that for each candidate region, 1NN query to the sample set
has to be performed. Therefore, limiting the amount of candidate regions
directly affects the time needed for the 1NN queries. Unfortunately, due to
the large dimensionality of the employed feature descriptors, it is not possible
to employ conventional index structures to improve the runtime performance
of nearest neighbor queries in the sample set. Therefore a full table scan is
required for each such query. As a result, increasing the number of considered
candidate regions increases the search time linearly.

Size of candidate boxes Another important factor having a large impact
on the performance is the size of the box from which the image features are
extracted. As mentioned before, the region from which the image features are
extracted should be larger than the average annotation box because a region
which only shows the vertebral body does not contain a lot of information
and does not include the very characteristic shape of the spinous process.
On the other hand, if the area is too large, the vertebrae will only cover
a small part of the result region. Thus, a trade-off between accuracy and
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Figure 5.10: Impact of the number of candidate boxes (1-10) being selected
from the bone density map on the classification performance. The bars marked
as 70%, 80%, 90% and 95% indicate the amount of test cases achieving the
given overlap.
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Figure 5.11: Impact of the size of the area from which features are extracted
on the classification performance. The size of the box is regarded relatively
to the average annotation box. The bars marked as 70%, 80%, 90% and
95% indicate the amount of test cases achieving the given overlap.
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selectivity of the result region has to be found. To evaluate this trade-off, the
average annotation was enlarged by a factor fbetween 1 and 3. The result can
be seen in Figure 5.11. The diagrams show a clear correlation between the
performance of the algorithm and the enlargement of the annotation box with
a slight maximum at about f = 2.5. The performance decrease for f > 2.5
is caused by the effect that the result region might be extended beyond the
borders of the of the lower part of the image. Also the 3×3 grid from which
the features are extracted is becoming rather rough in this case which makes
small important structures less significant.

Size of the inspected area of the image Another source for errors is
the bone density map. Especially if the resolution of the CT-scan along the
z-axis is very high, it might happen that there is almost no bone structure in
the area where the vertebrae is expected because the slice is exactly between
two vertebrae and thus only shows the intervertebral disk and the spinous
process. In these situations, there is a comparatively high bone density along
the ribs or at the sternum, which of course generates false hits.

In Section 5.3.4, it is mentioned, that for performance reasons, it is possible
to limit the search for bone pixels to the mid third of the detected image
area. This step has not only the effect that the amount of pixel operations is
being considerably reduced but also that the possible locations of the spine
are limited to the most relevant area as well. Therefore, there exists another
trade-off that must be dealt with: The algorithm could scan the complete
image and thus provide highest flexibility at the cost of both runtime and
accuracy. If the scanned area is very small, the processing speed is better but
the classification might be less robust in cases where the vertebrae is outside
the considered area. For example, if the bounding box detection fails, it might
occur that the actual position of the spine is outside the considered area.
Figure 5.12 shows the evaluation of this experiment and proves the assumption
that the performance increases with a decreasing size of the scanned area. In
order to choose a reasonable trade off between flexibility, processing time and
accuracy, a factor of 1

3 was chosen for the evaluation of the algorithm.
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Figure 5.12: Impact of limiting the area being analyzed for bone pixels
on the classification performance. The size of the analyzed area is regarded
relatively to the patient’s body width. The bars marked as 70%, 80%, 90%
and 95% indicate the amount of test cases achieving the given overlap.
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Table 5.4: Execution time

HU Histograms Haralick features PHoGs
Execution time 38min 57min 34min

Speed and Memory The processing time for all 9 239 images was 38min
on an AMD Athlon 2.59 GHz, which is about 240ms per image in average in
the case of HU Histograms (Haralick: 57min, PHoG: 34min, cf. Table 5.4).
The settings used for this measurement comprised the complete process chain
including the image preprocessing, bone density, candidate selection, nearest
neighbor search (with the features kept in memory), refinement and validation.
The algorithm was implemented in Java 1.6 with ImageJ [117]. Also the
memory footprint of the algorithm did not exceed the standard size of 32mb
for the heap of the Java VM.

The comparatively sparse amount of resources needed for this algorithm
also suggests that the method could also be applied in a large fashion with
several parallel execution paths.

5.5.3 Weighted Detection with Dynamic Resize

Quality Measure

In Section 5.3, the area overlap between the detected area and the doubled
annotation box αd was used. Since the previous method does not use any
refinement step, the result boxes have fixed sizes so that the size of the
compared boxes is very similar. In this method, the predicted region can be
much smaller than αd due to the refinement. Thus it can happen that an
ROI which is completely contained in the annotation box can still be strongly
displaced. Nevertheless, as it is contained in αd the yielded result will still
show a complete cover and thus a perfect hit.

To overcome this problem, a smaller annotation box is employed in this
case. The new annotation box around the vertebral body is only extended
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vertically to the bottom by a factor of 2, building the new ROI αv. The
extension to the bottom is necessary to make sure that the spinal process is
part of the annotation. Nonetheless, the new annotation boxes are only half
of the size of the boxes employed before.

Formally, the overlap is now measured as follows:

ξoverlap = area(αv)
⋂
area(κrefined)

argmin(area(αv), area(κrefined))
(5.19)

As a second quality measure, the distance ξdistance between the centers of
the ROIs αv and κrefined is computed. ξdistance describes the spatial derivation
of the search compared result to the true position.

ξdistance =
√

(p.x− q.x)2 + (p.y − q.y)2 (5.20)
p = center(αv) ; q = center(κrefined) (5.21)

This measure is proposed especially for the case, that the sizes of αv and
κrefined have very different sizes, so that one ROI is covered completely by
the other. In such a case, it is more preferrrable that the center of the ROIs
are close to each other which indicates a better result than the same ξoverlap
with larger ξdistance.

Evaluation

Same as in Section 4 and Section 5.3 the evaluation was done by applying a
leave-one-patient-out validation, where a complete CT scan was defined as
the source for query slices and all other scans were used as training data sets.
In the following, the method proposed in this section (named EVD) will be
compared to the method proposed in Section 5.3 (named VD).

Comparison to VD and quality metric Comparing EVD to VD shows
a significant improvement throughout the complete cumulative distribution
function (CDF) which can be seen in Figure 5.13(a). Especially in the region
of 70 − 80% area overlap, an improvement of 15% can be observed. Also,
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P (overlap > x%) > 0.9 is now reached in x = 72% of the cases compared to
x = 62% using VD. Also the distance between the centers of the detected
ROIs to the true ROI is reduced significantly as can be seen in Figure 5.13(b):
The detected ROIs now deviate less than 17 mm using EVD from the true
position in 90% of the cases compared to 28 mm when using VD.

In Figure 5.13 both algorithms are compared using the former quality
metric as well as the new overlap metric. This figure also illustrates the
impact of the new way the area overlap is calculated.

Search mask (ρsm) By applying the new region extraction, the search space
in the image is reduced to an average of less than 9% of the original image’s
area. This is comparable to the simple approach proposed in Section 5.3,
where the search space was reduced to the mid third of the patients body,
which caused an average reduction of computation time to less than 21%
without employing any knowledge in the database.

Refinement One of the major concerns of VD was the size of the detected
ROI which was defined by the size of an average annotation box that was
doubled in width and height. The refinement method introduced in Sec-
tion 5.4.2 addresses this issue and is able to reduce the width, height and
area of the ROI to an average of 62% (width) and 80% (height) which results
in an average area decrease of 49%. Also, the 2-step refinement fails in just
less than 1% of the cases where it fall backs to the size of the unmodified size
of φbox.

Figure 5.14 shows the positive impact of the refinement process on both
area overlap and distance deviation. Figure 5.14(b) shows the large impact
on the distance deviation in the first two columns of the diagram. Using
EVD, the probability to achieve < 35 mm distance deviation is now 0.35
(P (dist < 5 mm) = 0.35) compared to 0.11 using VD. Also P (dist < 10 mm)
was raised from less than 0.5 to more than 0.72.
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Figure 5.13: Comparing VD and EVD by using the new overlap measure
(a) and distance deviation (b). In Figure (a) the difference of the dashed blue
line to the solid blue line shows the impact of the stricter quality measure.
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Feature Descriptors / Candidate selection: The evaluation of different
feature descriptors (φdesc(1), . . . , φdesc(5)) mentioned in Section 5.4.2 revealed
the slightly superior performance of HU-histograms (φdesc(1)) compared to
other feature descriptors which have been proposed in the literature before.
The according diagrams can be seen in Figure 5.15 where it can be seen that
thumbnail features perform worst. The best features are HU histograms,
followed by Haralick texture features.

An evaluation of λ and η which are both affecting the selection of candi-
dates proved a strong stability with respect to the values for both parameters.
Diagrams of the comparison of the feature descriptors and for the parameters
λ and η are shown in Figure 5.16 and 5.17.



102 5 Vertebra Detection

0,10

0,15

0,20

P(
ov
er
la
p 
> 
x 
%
)

0,00

0,05

95% 90% 85% 80% 75% 70%

P

HU Histogram Haralick Phog Binary Histogram Thumbnail

(a)

0,15

0,20

0,25

0,30

0,35

0,40

0,45

P(
di
st
 <
 x
 m

m
)

0,00

0,05

0,10

0,15

5mm 10mm 15mm 20mm 25mm 30mm

HU Histogram Haralick Phog Binary Histogram Thumbnail

(b)

Figure 5.15: Comparison of feature types regarding both quality measures
(Area overlap (a) and distance deviation (b)).
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Figure 5.16: Impact of the amount of candidates (η, displayed on the x-axis)
on the detection rate measured by the distance to the ground truth annotation
Figure (a) and the area overlap (b).
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Figure 5.17: Impact of the neighborhood size (λ, displayed on the x-axis) on
the detection rate measured by the distance to the ground truth annotation
Figure (a)) and the area overlap (b).
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Part III

Medical Sensor Data
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Chapter 6

Introduction

In the previous chapter, the importance of medical imaging was emphasized
as the amount of imaging data which is currently produced by clinicians is
overwhelmingly huge but yet far from being fully exploited. Another field
in the medical domain that suffers from the same problem is medical sensor
data. Even though imaging devices could also be regarded as sensors, this
chapter does not focus on imaging techniques but addresses topics concerning
physical activity of a person or patient.

It is commonly agreed on the fact that physical activity is a major factor
in medical prevention, diagnosis and also in therapy. Yet the potentials of
physical activity seems to be far less disclosed as it is for example the case
of medical imaging. One problem for the exploitation of physical activity
is of course that the recording of data is more time consuming than in the
case of medical imaging. Per definition, physical activity is defined by certain
motion or behavior over a certain period of time. This statement poses a set
of problems:

First of all, motion per se is usually a 4 dimensional measure as it is
usually the case that a 3 dimensional coordinate or change in coordinates is
tracked in dependency of time. This implies of course that - in order to track
an activity - hardware devices are needed for the tracking itself. This might
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not be a problem if the activity is monitored and recorded in a controlled
environment like in a medical rehab center or a clinic. However if activity
should be recorded in a long term manner in an uncontrolled environment or
in a patient’s home environment with least impact to his daily life as possible,
the requirements to the recording devices are much stricter in terms of size,
robustness and runtime.

The second problem shows up when the data should be analyzed and
interpreted. Comparable to medical imaging where a variety of imaging
modalities exists, there is a large variety, how physical activity can be mea-
sured. This involves for example the position of the sensor at the body (e.g.
at the leg, foot, arms or at the belt to name just a few), the measurands that
are recorded (e.g. position, acceleration, pulse, skin temperature, etc.) and if
the data is recorded by a single sensor or a multiple sensor systems.

Depending on the data that is recorded, a large variety of algorithms has
already been developed in the past. Yet those algorithms are very specialized
to the combination of recorded data and problem statement. In the case
of this work, a newly developed miniaturized 3d accelerometer was used to
record data at a comparatively low rate (25Hz) while being mounted at the
ankle of the test person. The location of the sensor was suggested by the
use case that the location of the sensor should be as unobtrusive as possible.
Also it must not feel disturbing to the person wearing the sensor even if the
sensor is worn over a long time.

In Section 7 of this work, the issue was to evaluate existing work for the
analysis of the data, so that a classification of activities would be possible. As
it turned out that existing methods did not yield the required performance, the
knowledge of existing works was combined and extended with new techniques
to achieve satisfying results.

But even if a method succeeds in a given task, there is still a long way
to a valid prototype. Usually a new method is tested and evaluated by
using one (or more) of the established data mining frameworks as they offer
a large repertoire of methods that come into consideration for solving the
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problem. Yet, if such methods have to be integrated into a prototype, they
usually do not offer convenient ways for an easy integration of the newly
developed methods into the prototype. This means that each time, the
proposed solution (a.k.a the model) is changed, some efforts have to be made
to port and integrate the solution into the prototype. The more often the
solution is changed, the more efforts are needed to update the integration.
This leads either to the compromise of an increasing amount of cost or a
reduced update rate - which are both unsatisfying solutions.

In Section 8 a software is presented which is based on an established
software platform. Instead of reinventing yet another data mining framework
or another demo, this work provides an integration technique for existing
data mining frameworks and combines them with the power of the open
platform system on which the work is based. The advantage is that algorithm
development and prototype development occur in the same environment
without loosing the ability to use algorithms from established frameworks.
This is done mainly by providing different interfaces (like a scientist interface
or a prototype-user interface) for different uses without the need to change
the underlying platform.
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Chapter 7

Activity Recognition

7.1 Introduction

Physical activity is not only strongly conclusive in nowadays diagnosis, yet
it also plays a major role in medical prevention as well as in therapy. For
example it can be important in order to prepare for certain clinical treatments
to measure and rate the fitness of a patient. Also in cases of rehabilitation
after surgeries or accidents it is of great importance for the recovery of the
patient that he performs a controlled amount of physical activity. In case
of prevention, it is also widely agreed on the fact, that physical activity is a
large impact factor in oder to avoid slipped disks. Even though it is widely
agreed upon the importance of physical activity, the medical potential is not
yet fully exploited.

Possibly, the most important reason for this is the fact that it is very
hard to detect and measure the amount and intensity of physical activity
automatically and most important objectively. In order to monitor the physical
activity in a long term manner, systems are needed that provide a run time
of 24h per day and several days successively. Also such systems should be
as small and unremarkable as possible in order to avoid stigmatization of a
patient – which would instantly lower the acceptance of such systems.
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Yet the requirements are not only constraint to the hardware which is
recording the activity. Even if the activity signals are recorded, clinicians
require methods for proper aggregation and visualization of the data as it is
unfeasibly to interpret the huge amount of raw data of a long term study in a
reasonable amount of time. Yet such methods must not make diagnoses totally
of their own but act as a supporting tool for the clinicians, driving the process
of manual interpretation into computer aided diagnosis. A first step towards
this aim is the automatic detection and classification of activity on such data,
so that a clinician can gain a quick overview about a patient’s activity during
a certain amount of time without the need of having to interpret raw data.

The following chapter describes the current state of an approach that was
designed for this use case of the automatic classification of physical activity.
The chapter is started by Section 7.2 which discusses related work, followed
by Section 7.3 which describes the feature extraction process. Section 7.4
describes the classification method which was employed on the features. The
experiments and evaluation are described in Section 7.5

7.2 Related work

The detection and classification of human activity by using data that was
obtained from sensor devices is subject of several research activities. Yet there
is no optimal solution for this task. An issue that might seem simple is for
example the position of the sensor at the body. The authors of [112, 138, 10]
have shown that the positioning can causes major implications to the detection
of physical activity. Yet the findings are contrary as the positioning also
depends on the type of activity that should be detected.

Nevertheless, most activity recognition techniques have a common pipeline.
This pipeline usually performs some cleaning of the raw data by applying
noise reduction techniques like median- or average filters [74, 77]. If the sensor
data is obtained from accelerometers, it might be desired to remove the earth
gravity from the raw signal as shown in [74] and [6].
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Afterwards relevant features are extracted from the resulting signal. In
order to apply common machine learning algorithms it is common practice
to discretize the continuous data stream into time frames of data with equal
length. The length of the time frames thereby varies from 1 – 10 sec [78, 88],
depending on the activity that should be recognized or detected.

After the discretization of the data, the actual features are derived from
the time frames. Common feature types can roughly be categorized in time
domain, frequency domain, wavelet (time-frequency) and heuristic features.
Time domain features are comparatively easy to compute as they can be
derived directly from the data. The authors of [88, 110, 143] for example
propose to use arithmetic mean and variance of the signal as features. An-
other characteristic feature is given by the peaks in the amplitudes of the
accelerometer data. In [88] the average time between peaks is used as a
feature, whereas the amount and average intensity of the peaks are used
in [143]. In cases where frequency domain features should be used, it is
necessary to transform the raw data into the frequency domain first. This is
usually done by applying a Discrete-Fourier-Transform (DFT). The authors
of [132]and [10] are then using the spectral energy of the signal as a feature.
In [10] the authors propose to use the entropy of the frequency domain to
differentiate between activities with very similar energy signals. In [105], time
and frequency domains are not regarded separately but combined by applying
a wavelet transform to the original signal. The coefficients of the transform
are then proposed as features for further processing.

Heuristic features are usually computed by applying statistical and mathe-
matical methods that involve more than a single axis of an accelerometer. The
authors of [74, 6, 149, 77] propose to use the signal magnitude area (SMA)
of all axes of the accelerometer as a feature in order to differentiate between
dynamic and static activities. The inter-axis correlation is used amongst other
features in [10] to differentiate activities concerning more than one body part.

The classification of physical activities based on the extracted features is
the next step in the processing chain. In [74, 105], threshold based techniques
are used. More sophisticated methods apply Decision Trees [10, 74, 65], Hid-
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den Markov Models [143], Gaussian Mixture Models [6], k-Nearest-Neighbors
Classifier [110, 65], Naïve Bayes Classifier [65] or Support Vector Machines
[84].

7.3 Feature Extraction

Prior to extracting any features from the raw data, there is first the need
to pre-process the recorded data. The accelerometers used for this work are
recording data in a range of ±2 g with a rate of 25Hz while the sensor is worn
at the ankle of the patient. The limitation to ±2 g is suitable for most of the
recorded activities. Yet if an activity which involves very strong accelerations
or decelerations is recorded, the signal is clamped to the domain of ±2 g even
though the actual signal would be much larger. In [25] for example, signals
up to ±12 g were observed.

7.3.1 Signal Reconstruction

In order to compensate the loss of information caused by the technical
limitation, the first preprocessing step aims at reconstructing the original
signal in areas where the signal seems to be cut-off.

In order to detect such samples, the raw signal is scanned for consecutive
maximum/minimum values which indicate a cut-off. Afterwards, the signal is
reconstructed by considering T samples before and after this segment. For
each of these T samples, the average slopes are computed. Afterwards both
values are combined to obtain the estimated slope ∆total:

∆before = 1
T

s∑
i=s−T

(xi+1 − xi) (7.1)

∆after = 1
T

e+T∑
i=e

(xi − xi+1) (7.2)

∆total = ∆before + ∆after

2 (7.3)
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With xi being a signal value at time i and s, e defining the start and end
indices of the segment that should be reconstructed. Afterwards the peak
signal is reconstructed by replacing all xi in the cut-off segment by interpolated
values. In cases where the cut-off segment has even length, a global extremal
value within this segment is ensured by increasing one of the middle values.
This procedure is illustrated in Algorithm 2.

Algorithm 2 Peak Reconstruction
h← b(e− s+ 1)/2c
for i = 1→ h− 1 do
x(s+i) ← x(s+i) +

√
i∆total

x(e−i) ← x(e−i) +
√
i∆total

end for
if isOdd(e− s+ 1) then
x(s+h) ← x(s+h) +

√
h∆total

else if (|∆before| > |∆after|) then
x(s+h+1) ← x(s+h+1) + ∆total

else
x(s+h) ← x(s+h−1) + ∆total

end if

7.3.2 Segmentation

In order to apply classification techniques it is often desirable to obtain time
frames with equal lengths building feature vectors with the same dimension-
ality. Some activities like jogging, walking or biking show a very periodic
pattern when they are executed over a longer period of time. Especially
in the case of biking, this is very comprehensible as pedaling causes a very
cyclic movement and thus a very repetitive signal as long as the person keeps
moving with the same speed. Using the standard approach, such a segment
of the data would be split up into several separate time frames which are
then classified. Depending on the length of the chosen time frames, this
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causes a repetitive classification of the same signal. Given the information
that a certain segment (which is assumed to be much larger than the time
frames) contains only periodic information, it is sufficient to classify only a
single time frame of this segment and thus classify the whole segment in a
transitive way. However the information whether a signal is periodic or not
needs to be computed. Obviously it is essential that this computation must
be computationally cheap in order to make advantage of this procedure.

In this work, the autocorrelation ρ(S, t1, t2) of a signal S at times t1 and
t2 is used to identify the periodic patterns:

ρ(S, t1, t2) = E[(St1 − µt1)(St2 − µt2)]
σt1σt2

(7.4)

Hereby, Si defines the subsequence of the recorded signal starting at time i.
µt1 , µt2 and σt1 , σt2 are the mean and variance values of the subsequences
starting at the according indices t1 and t2. The length of the subsequences is
limited to a certain length. In order to detect the existence and the length of
a periodic pattern in the data, Algorithm 3 is employed on the data. The
required parameters are shown in Table 7.1.

Basically, the algorithm starts to search for a t2 where ρ(S, t1, t2) ≥ τ . If
τ is not exceeded within the search range of max samples, the algorithm has
not found a periodic pattern for the subsequence so that a new detection
is executed for a new subsequence at t1 + x with x > 0. Otherwise if
ρ(S, t1, t2) ≥ τ , the first periodic pattern to the subsequence at t1 was found
at t2. The distance between t1 and t2 is called the shift. The algorithm then
recalculates the autocorrelation repeatedly as long as (7.5) holds. As soon as
the equation no more holds, the end of the last segment is returned for which
the equation did hold.

ρ(S, t1, t1 + k · shift) ≥ τ ; k ∈ N+ (7.5)

Afterwards t1 is set to a position after t2 and the process is started again.

The accelerometer in this work records a data series for each axis so that
this procedure is applied for all three axes separately. Finally only those
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Table 7.1: Input parameters for the algorithm used to identify periodic
patterns in the recorded data.

X Recorded data for one axis
t1 Starting index
τ Minimum value for the autocorrelation
max Maximum seek range measured from t1

Algorithm 3 Identification of periodic patterns
Require: X, t1, τ,max
shift = 0 ; ρ = 0
while ρ < τ and shift < max do
shift← shift+ 1
ρ← ρ(X, t1, t1 + shift)

end while
t2 = t1

if ρ ≥ τ then
while ρ ≥ τ do
t2 ← t2 + shift

ρ← ρ(X, t1, t2)
end while

end if
return t2

segments are marked as periodic signals, where the algorithm described above
detected periodic signals in each axis. At the end of the segmentation process,
the complete data series is marked with segments which contain periodic data
or aperiodic data.

7.3.3 Feature Extraction

The aim of this step is to derive feature vectors from the data segments. This
feature vector represents a concatenation of 5 different features which will be
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explained in the following. Unless mentioned otherwise, a reference to the
term acceleration can be regarded equivalent to the term deceleration within
the next sections.

Auto Regression Coefficients (ARC)

Autoregressive (AR) models are used in signal processing and statistics in order
to model certain kinds of random processes. The value xt of an autoregressive
model at time t is thereby defined by

xt =
p∑
i=1

ai · y(t−i) + εt (7.6)

with p denoting the order of the AR model, ai denoting the i-th AR coefficient,
yt ∈ Y the value of the process at time t and εt denoting the white noise
at time t. Given the data Y , the values of ai can be estimated in various
ways, for example by using the common least squares method. In this work,
AR models with an order of 3 were computed for each axis separately. The
resulting 3× 3 = 9 coefficients represent the first 9 values of the final feature
vector.

Signal Magnitude Area (SMA)

The signal magnitude area is a simple, yet common measure in the area of
activity classification. The SMA is defined by the normalized sum of absolute
values over all axes recorded from the accelerometer divided by the length
of the regarded segment. In case of a 3 axes accelerometer with the signal
obtained from the axes denoted by x, y and z, the SMA of a segment with
length N is defined by:

SMA = 1
N

N∑
i=1

(|xi|+ |yi|+ |zi|) (7.7)

As there is no normalization regarding the maximum peak values, larger
amplitudes of the recorded signals obviously have direct impact on the value
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of the SMA. Thus, activities with large accelerations will usually produce
higher values for the SMA than slower activities with less accelerations.

Tilt Angle (TA)

The 3d accelerometer in this work is intended to be worn always in the same
position at the ankle. Therefore, the tilt angle of the sensor also describes the
tilt angle of the lower leg. The position and movement of the lower leg are
used as an additional description of the activity that is currently performed
by the patient. The value used for the feature vector describes the angle
between the positive vector of the earth’s gravitational field and the z-axis of
the accelerometer: v = arccos(z).

Average Peak (AP)

Another feature that is proposed in this work is the intensity of the average
peak values of a segment S. In contrast to the tilt angle, the average peak is
calculated for each axis separately. In the following, the term peak refers to
both negative and positive peaks. To reduce the effect of outliers, S is first
convolved (smoothed) with a kernel k of size 3 (k = 1/3, 1/3, 1/3).

In order to determine the peaks of a segment, the algorithm first starts
with the determination of an absolute global peak smax with respect to the
absolute values of the signals in S:

smax = {st ∈ S | ∀si, st ∈ S ∧ t 6= i : |si| ≤ |st|} (7.8)

With st and si denoting the intensity values of the samples at time points
t and i respectively. Afterwards the threshold value τmax is initialized with
τmax = 0.98

In the second step, the algorithm identifies all samples Speaks with an
intensity larger or equal than the absolute value of τmax · smax:

Speaks = {sti ∈ S | |sti | ≥ τmax · |smax|} (7.9)
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After this, Speaks may contain neighboring samples belonging to a single
peak. Therefore Speaks is filtered in the next step. If subsequent samples are
less then 10 samples apart from each other, only the larger one is retained
while the other one is discarded.

If this procedure detect less than 3 peaks τmax is lowered by 0.02 and the
peak detection is repeated until either 3 or more peaks were identified or until
τmax = 0.7.

If more than 3 peaks were detected (|Speak| ≥ 3), the feature value for this
axis is determined by the mean value of all samples in Speak. Otherwise, if
the latter condition is reached (τmax = 0.7), it is assumed that S does not
contain significant peaks and the feature value is assigned +1 if the mean
value of the samples in Speak is greater than 0 or −1 otherwise. The process
of peak detection is outlined in Algorithm 4.

Surrounding Segmentation Rate (SSR)

During the evaluation of the segmentation process, it was experienced that
different activities show a very different ratio between periodic and aperiodic
segments. This lead to the assumption, that the information about the ratio is
also an informative feature for the differentiation between different activities.
To compute the SSR, a time frame of 60 s surrounding the current segment is
examined. The ratio of signals located in periodic segments then realizes the
value of the SSR feature.

Features from Periodic Segments

Due to the information that the signal is periodic it is sufficient to extract a
single feature vector for the complete segment. After the classification of this
single feature vector, the result can be transferred to the complete segment.
This has the advantage that the computation for the feature vectors has only
to be done once for a complete segment. Another advantage is that it is
possible to represent large amounts of raw data with just a single feature
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Algorithm 4 Peak Detection
Require: S
S ← convolve S with (1/3, 1/3, 1/3)
smax ← arg max

si∈S
S

Speaks ← {}
τmax = 1
while |Speaks| < 3 ∧ τmax > 0.7 do
τmax ← τmax − 0.02
Speaks ← {si ∈ S | |si| ≥ |smax| · τmax}
for all si, sj ∈ Speak do
if |i− j| ≤ 10 then
Speaks ← Speaks − arg min{|sj|, |si|}

end if
end for

end while
avg ← average of all si ∈ Speaks
if |Speaks| ≥ 3 then
return avg

else
return avg/|avg|

end if

vector. For example, a periodic segment with a length of 1min consists of
4 500 samples1. After feature extraction, a single feature vector with just 15
values remains which results in a compression factor of 300.

Features from Aperiodic Segments

Aperiodic segments require a more detailed examination as it is not feasible
to extract a single feature vector for the complete segment as it is likely that
it consists of different activities. In this case, the segment is split into sub

11 min→ 60 s · 25 Hz · 3 axes = 4 500
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segments with a size of 80 samples. Afterwards, a feature vector is computed
for each sub segment. If the last segment is larger than 40 samples, another
feature vector is computed for this sub segment as well.

7.3.4 Linear Discriminant Analysis

Before applying the classification process, a Linear Discriminant Analysis
(LDA) is applied to the features with the aim to decrease the scatter within
a class and to increase the inter class distance of the feature vectors. This
step is necessary because the features were extracted from the raw signals
ignoring the fact that different people show a different flow of movement even
if they perform the same physical activity. Different flows of motion between
different persons can for example be caused by different body heights or the
the speed at which the activity is performed. Also a trained person might
show a different flow of motion compared to an untrained person. Last but
not least, the position of the sensor is also an impact factor. Even if the
position is restricted to the ankle, the rectangular sensor can still be rotated
by 180° in each axis and of course the sensor can change the position over
time if it is not fixed accurately.
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7.4 Classification

7.4.1 Classifying Features

The classification is used to assign class labels to the feature vectors and
thus to the segments or sub segments from which the feature vectors were
extracted. In this work, Naïve Bayes classifiers were applied to perform the
classification. In contrast to other works, there is not just a single classifier
but one classifier for features extracted from periodic segments and one for
feature vectors from aperiodic segments. Except the differentiation of the
input data, both classifiers are trained and used in the exactly same way.
In the end, almost all samples from the raw data are assigned a class label.
Samples for which no feature vector was extracted (for example because they
are at the end of an aperiodic segment), remain unlabeled in this step.

7.4.2 Reclassification

The aim of this step is to classify all samples which have not yet been assigned
a class label and also to compensate classification errors from the step above.
If for example the “biking” is recognized over a period of several minutes
with some seconds “elliptical training” in between, it is very likely that a
classification error occurred. The reclassification is executed for each sample
si of the data set in the following way:

First, a weighted class label histogram Hclasses is created for the period of
si±dmax samples, with dmax = 375 which corresponds to ±15 s. Samples that
are not yet assigned a label are temporarily assigned the class unclassified.
Depending on the distance to si, a sample sj contributes dmax + 1− |i− j| to
Hclasses if the sample does not belong to the class unclassified.

The second step is the actual reclassification: In case of si being an
unclassified sample, si is assigned the class with the highest value in Hclasses.
Otherwise the class label is only changed, if the class with the highest value
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in Hclasses has a ratio of more than 50% compared to all other classes in
Hclasses.

7.5 Experiments

7.5.1 Data

The data used for the experiments in this work were obtained from different
sensors donated from the Sendsor GmbH. All sensors are identical in construc-
tion and record data at a rate of 25Hz by using a built-in 3D accelerometer.
The accelerometer records the acceleration in all 3 axes in a range of ±1 g
with a resolution of 128 units (=̂1/128 g).

Different people recorded their physical activities independently of each
other in their home environment. The speed and intensity of the activity was
not restricted. Also the only requirement was to wear the sensor upright at
the ankle of a foot without specifying the top or bottom of the sensor. The
test persons were all in the age between 20 and 35, with different gender,
different fitness levels and different body height, so that a rather diverse data
set was obtained. In total, 22 different sequences with a total duration of
more than 10 hours were obtained for 5 different activities (cf. Table 7.2).

Table 7.2: Data set description

Activity # of Sequences Duration (hh:mm:ss)
elliptical trainer 3 00:55:07
walking 6 02:42:09
inline skating 3 01:55:50
jogging 6 02:37:13
biking 4 02:32:46
total 22 10:43:05



7.5 Experiments 125

7.5.2 Evaluation

All the following evaluations were performed by executing a Leave-One-
File-Out validation. This type of validation was preferred over a regular
cross-validation in order to avoid having samples and segments from one
sequence in the test and training data. The over all performance is compared
to a recent work shown in [77].

Feature Evaluation

The amount of features that are used and described in appropriate literature is
very large. To avoid picking a random set of features which possibly includes
features that do not contribute to the detection rate, a set of 8 features shown
in Table 7.3 was implemented and evaluated by using a Forward-Backward-
Search [152] that avoids an exhaustive search through all possible feature
combinations. This evaluation was done separately for periodic and aperiodic

Table 7.3: Candidates for the feature selection process. The last two columns
indicate the features that were used in [77] and in this work.

Name Abbrev. Features in [77] here
AR Coefficients ARC 9 X X

Signal Magnitude Area SMA 1 X X

Tilt Angle TA 1 X X

Average Peak AP 3 - X

Surrounding Segm. Rate SSR 1 - X

Inter Axis Correlation IAC 3 -
Arithmetic Mean Mean 3 -
Variance VAR 3 -

segments. In the end, this evaluation showed that a combination of 5 features
(ARC, SMA, TA, AP, SSR) from the candidate set performs best.



126 7 Activity Recognition

Classification

The decision for the Naïve Bayes classification was the result of an extensive
comparison of 32 classifiers provided by WEKA [61] including two artificial
neuronal nets (ANN) (one from [61] and a more sophisticated ANN from the
Encong framework2). All the classifiers were tested with their default param-
eters. ANNs were tested with 10 neurons and 5 output neurons (according to
the amount of activities/classes).

The result of this evaluation showed a superior performance of 97.18% in
case of the comparatively easy Naïve Bayes classifier. The second best result
of 96.67% was obtained from using sequential minimal optimization (SMO)
[111], followed by 94.88% by a normalized Gaussian radial basis function
network. A more detailed listing of the classification results of the Naïve
Bayes classifier can be seen in Table 7.4.

Table 7.4: Classification rate by using the Naïve Bayes classifier without
reclassification.

Inline Elliptical Tr. Jogging Walking Biking Average
98.20% 97.76% 97.79% 95.29% 97.57% 97.18%

Signal Reconstruction

The impact of the signal reconstruction step described in Section 7.3.1 showed
the largest impact in the activities inline skating and walking where the
classification rate was improved by 2%. In the jogging class, the performance
was increased by about 0.5 % while the effect at biking was negligible and
the elliptical trainer class even showed a slightly decreased classification rate
( 0.5 %). Over all, the classification was increased by 0.9 %, so that the signal
reconstruction was retained.

2http://www.heatonresearch.com/encog
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Segmentation

The impact of the segmentation process described in Section 7.3.2 was most
significant for the activities inline skating, walking and biking. In these classes
the classification rate increased each by more than 5%. In that case, the SSR
feature could of course not be used, so that the feature vector only consisted
of 14 instead of 15 features. In average, an increase of the classification rate
of 4.47% was observed (from 92.71% to 97.18%).

Linear Discriminant Analysis (LDA)

Excluding the application of the LDA to the features had a very large impact
to the classification of the elliptical trainer data where the classification
decreased to about 50% without an LDA while the classification of the
remaining activities remains almost unchanged. Without the LDA, the
elliptical trainer data was mis-classified either as walking or as biking which
show indeed very similar flows of motion.

Reclassification

Applying the reclassification as described in Section 7.4.2 showed a positive
effect on all activities so that the over all classification rate could be raised by
another 1.63 % to a final accuracy of 98.85 %. Yet it should be kept in mind
that if changes of activities occur within less than a minute, the reclassification
step could also decrease the classification as it uses data of the surrounding
0.5min to classify yet unclassified samples but also to reclassify samples.

Comparison to Reference

Last but not least, the method proposed in this chapter is compared to a
reimplementation of the work of Khan et al [77] (referred to as KLLK in the
following) where an accuracy of 97.9% is reported. However, the sensor used
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in KLLK is not mounted at the ankle but at the chest so that very different
signals are recorded by the accelerometer.

Using the data set described above, KLLK did not yield the expected
performance, so that a resilient propagation algorithm instead of a back
propagation algorithm for the training of the neuronal nets as this produced
better results. After this change, KLLK achieved an accuracy of 97.1% and
93.6% in case of the elliptical trainer and jogging classes respectively. In
the cases of inline skating and walking the performance was about 80% and
biking was only classified correctly in less than 75% of the cases, so that an
average accuracy of 85.31% was achieved.

This means that the algorithm proposed in this work performs about
13% better than KLLK, regarding all classes. Also, the stability of the
classification is much higher for the proposed algorithm with a minimum of
96.83% in case of walking compared to 80.1% and 74.94% in case of KLLK.
An overview comparing both algorithms can be seen in Table 7.5.

Table 7.5: Comparison of the classification results for the test data using
KLLK to the work proposed in this chapter.

skating ell.trainer jogging walking biking average
KLLK 80.85% 97.10% 93.56% 80.10% 74.94% 85.31%

this work 99.37% 98.73% 99.36% 96.83% 99.94% 98.85%
∆ 18.52% 1.63% 5.8% 16.73% 25.00% 13.54%



129

Chapter 8

Knowing: A Generic Data
Analysis Application

8.1 Introduction

Supporting the data mining process by tools was and still is a very important
step in the history of data mining. By the support of several tools, scientists are
nowadays able to apply a diversity of well known and established algorithms
on their data for quick comparison and evaluation. In the past years, several
data mining frameworks like ELKI [2], MOA [21], Weka [61] or RapidMiner
[96] have been presented and established (among many others). Although all
frameworks perform data mining in their core, they all have different target
groups:

WEKA and MOA provide both algorithms and graphical user interfaces
(GUIs). By using these GUIs, the user can analyze data sets, configure and
test algorithms and visualize the outcome of the according algorithm for
evaluation purposes without needing to do some programming. As the GUI
cannot satisfy all complex scenarios, the user still has the possibility to use the
according APIs to build more complex scenarios in his own code. RapidMiner
integrates WEKA and provides powerful analysis and reporting functionalities
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which are not covered by the WEKA GUI itself. RapidMiner also provides an
improved GUI and also defines an API for user extensions. Both RapidMiner
an WEKA provide some support to external data bases. The aim of ELKI
is to provide an extensible framework for different algorithms in the field of
clustering, outlier detection and indexing with the main focus being set on the
comparability of algorithm performance. Therefore, single algorithms are not
extensively tuned to performance but tuning is done on the application level
for all algorithms and index structures. Same as the other frameworks, ELKI
also provides a GUI so that no programming is needed for the most basic
tasks. The framework also provides an API that supports the integration of
user-specified algorithms and index structures.

The above frameworks are providing support for the process of quick
testing, evaluating and reporting very well and all define APIs in different
depths so that programmers can incorporate own algorithms into the systems.
But even though all frameworks are based on Java, none of them makes use
of a standardized plug-in system like OSGi1, Java Plugin Framework (JPF)
or Java Simple Plugin Framework (JSPF). This has the disadvantage that
each implementation of an algorithm is specifically adapted to the according
framework without being interchangeable.

In cases where the requirements enforce a rapid development from data
mining to a representative prototype or to an early release of the software,
these unstandardized plug-in systems can cause a significant delay which is
caused by the time which is needed to incorporate the algorithms into the
prototype.

Knowing (Knowledge Engineering) aims at providing a framework that
bridges the gap between the data mining process and the process of rapid
prototype development. This is achieved by using the standardized OSGi
architecture2 so that algorithms can be packed in OSGi resource bundles.
This offers the possibility to either create brand new algorithms from scratch
as well as the possibility of importing existing algorithms from other data

1OSGi: http://en.wikipedia.org/wiki/OSGI
2Eclipse Equinox: http://www.eclipse.org/equinox/
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mining tools. In the latter case, the imported algorithms are wrapped and
packed together into a separate bundle. Such bundles are then registered
as independent service providers to the Knowing framework. In either case,
algorithms are wrapped into Data Processing Units (DPU) which can be
configured via GUI controls.

The advantage of these OSGi compliant bundles is that they are not
restricted for a use in Knowing but can be used in any OSGi compliant
architecture like the Eclipse Rich Client Platform (RCP) or the NetBeans
RCP. This means that Knowing does not provide yet another plug-in system.
Instead Knowing provides the possibility to use the DPUs contained in the
system but also to use them in any other OSGi compliant architecture. As
dependencies between resource bundles have to be modeled explicitly, it is
much easier to extract certain bundles from the system than in other systems.

This loose coupling is not only an advantage in case where algorithms
should be ported between completely different systems but also if the GUI
should be changed from a data mining view to a prototype view for the
productive system. Knowing itself is based on the established and well known
Eclipse RCP3 system, so that the GUI can be changed very easily in order to
change the data mining view into a system or end user view.

This can be done by either using the resource bundles containing the
DPUs, or by directly extending Knowing itself. As Eclipse Equinox itself is
designed as an RCP using OSGi, it is comparatively easy to unregister the
original Knowing interface and replace it with an interface representing the
final application.

In this scenario, the MedMon system is presented which itself extends
Knowing. In the developer stage, it can easily be switched between the
scientific data mining view and the views which will be presented to the
end users later on. As MedMon is intended to be used by different target
groups (physicians and patients), it is desired to use a single base system
for all views and only deploy different user interface bundles for each target

3Eclipse RCP: http://www.eclipse.org/platform/
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group. This way, the data mining process can seamlessly be integrated into
the development process by reducing long term maintenance to a minimum
as only a single system with different interface bundles has to be kept up to
date and synchronized instead of a special data mining tool, a physician tool
and the patient tool.

Thus, the Knowing framework provides: a standardized plug-in system
based on OSGi, a pluggable GUI based on Eclipse RCP, a growing amount of
wrappers for algorithms of common data mining frameworks.

The advantage for the user lies in the improved possibility to integrate and
exchange algorithms as well as to easily perform pre- and post-processing of
data. Thus, Knowing does not not provide yet another data mining tool with
an open API but provides an exchange format for algorithms and algorithm
wrappers to combine different tools for faster prototype development. Besides
this, Knowing offers a simple, yet powerful user interface, a bundled embedded
database as data storage, extensible data mining functionality, extension
support for algorithms addressing different use cases and a generic visualization
of the results of the data mining process. Details of the architecture will be
given in Section 8.2. A demo system dealing with temporal sensor data will
be explained in Section 8.3.

8.2 Architecture

In the following the architecture of the Knowing framework is described which
consists of a classical three tier architecture comprising data storage tier, data
mining tier and GUI tier:

8.2.1 Data Storage

The data storage tier of Knowing provides the functionality and abstraction
layers to access, import, convert and persist the source data. The data import
is accomplished by an import wizard using service providers, so that importing



8.2 Architecture 133

data is not restricted to a certain format.

In the case of the MedMon application for example, a service provider is
registered that reads binary data from a 3D accelerometer[137] which is con-
nected via USB. The data storage currently defaults to an embedded Apache
Derby database4 which is accessed by the standardized Java Persistence API
(JPA & EclipseLink). This has the advantage that the amount of data being
read is not limited by the computers memory and that the user does not have
to set up a separate data base server on his own. However, by using the JPA
there is the possibility to use more than 20 elaborated and well known data
base systems which are supported by this API5. An important feature in the
data storage tier arises from the possibility to use existing data to support
the evaluation of newly recorded data, e.g. to apply certain parts of the data
as training sets or reference results.

8.2.2 Data Mining

This tier includes all components needed for data mining and data anal-
ysis. OSGi bundles containing implemented algorithms are available fully
transparently to the system after the bundle is registered as a service provider.

Algorithms are either implemented directly or wrapped in Data Processing
Units (DPUs). Following the design of WEKA, DPUs represent filters,
algorithms or classifiers. One or more DPUs can be bundled into an OSGi
resource bundle which is registered into the program and thus made available
in the framework. Bundling algorithms enforces a pluggable and modular
architecture so that new algorithms can be integrated and removed quickly
without the need for extensive dependency checks. The separation into
bundles also provides the possibility of visibility borders between bundles
so that separate bundles remain independent and the danger of building an
unmaintainable system where everything depends on everything else is very

4Apache Derby: http://db.apache.org/derby/
5List of supported databases:

http://wiki.eclipse.org/EclipseLink/FAQ/JPA
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low.

The modularity also provides the possibility to concatenate different
algorithms into processing chains so that algorithms can act both as sources
and targets of processed entities. Raw data for example first could pass one or
more filtering components before being processed by a clustering component.

Creating a processing chain (model) of different, concatenated algorithms
and data-conditioning filters is supported by GUI controls, so that different
parameters or concatenations can be tested easily. After a model has proved
to fit the needs of a use case, the model can be bundled and later be bound
to other views in the GUI so that porting, adapting and integration costs are
minimized to binding components and models together without porting and
adapting algorithms etc from different APIs.

This architecture provides the possibility to integrate algorithms from
other sources like [2, 21, 61], so that existing implementations can be reused
without having to re-implement all algorithms from scratch. This also provides
the possibility to replace components by different implementations quickly if
performance or licensing issues require to do so.

In the data mining part of the application, Knowing not only supports
plain Java but also relies on the use of the Scala programming language. Scala
is a functional and object oriented programming language which is based on
the Java Virtual Machine, so that it seamlessly integrates into Knowing. The
advantage of Scala in this part of the application lies in the easy possibility
of writing functional code shorter than in regular Java code. By using the
Akka actor-model6 it is easy to create processing chains which are executed
in a parallel way so that Knowing can make use of multi core systems.

6Project Akka: http://akka.io/
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8.2.3 User Interface

Using the well established Eclipse RCP and its powerful concept of views
enables developers to easily replace the view of the data mining scientists with
different views for end users or prototypes. Thus, the task of porting data
mining algorithms and the data model to the final application is replaced by
just switching the view component and binding model and GUI components
together.

8.2.4 Modularity

As mentioned before, Knowing is based on Eclipse and is organized in different
bundles. This brings the great advantage that data minders and developers
can take two different ways towards their individual goal: If they start a brand
new RPC based application, they can use Knowing out of the box and create
the application directly on top of Knowing. The more common case might be
that an RPC or OSGi based application already exists and should only be
extended with data mining functionality. In this case, only the appropriate
bundles are taken from Knowing and integrated in the application.

8.3 MedMon

A prototypical implementation based on Knowing is MedMon. MedMon
(Medical Monitoring, cf. Figure 8.1) is motivated by following a real-world use
case where the convalescence of patients should be monitored by analyzing
their daily physical activity as presented by the works of [136] and [137].
Among others, features like quality, intensity and amount of physical activity
are diagnostically strongly conclusive as they have major influence on medical
prevention, convalescence and therapy.

Physical activity in this case includes various types of motion like walking,
running and cycling. The task is to perform data mining on long-term
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temporal sensor data which is provided by people wearing a little 3D sensor
which is recording and storing acceleration data in all three axes with a
frequency of 25Hz. When the sensor is connected to a computer, the data
is parsed and transferred to the Knowing framework, where it is stored in a
database. Knowing is able to deal with different types of time series which
are not limited to the medical field but can be applied to different types of
scenarios where time series data is being produced and needs to be analyzed.
Analyzing the data in this use case means the application of clustering and
classification techniques in order to detect motion patterns of activities and
thus to separate the different types of motions. Available algorithms as well as
additionally implemented techniques for data mining and the pre-conditioning
of the temporal data (e.g. filtering of specific information, dimensionality
reduction or removing noise) can efficiently be tested and evaluated on the
data and furthermore applied to the data by taking advantage of the OSGi
compliant architecture (cf. Section 8.2). By using the standardized OSGi
plug-in system, well-known data mining tools are integrated so that the re-
implementation of already tested algorithms can be avoided. The requirement
of a quick migration of the final data mining process chain to a prototype
system is accomplished by using different graphical views on a common
platform. Thus, neither the process model nor the algorithms needs to be
ported. Instead, only a different view of the same base model needs to
be activated to enable the prototype. Finally, MedMon provides a generic
visualization model to present the results of the data mining process to the
user.

By using the MedMon application, the user can import 3D acceleration
data from the hardware sensor into a database. Working with MedMon, the
user is enabled to switch between different roles (cf. Figure 8.1 and 8.2). The
prototype allows several views on the recorded data and the results of the
data mining process: Such views are for example the data mining view, where
DPUs can be combined to processing chains and which allows to employ newly
developed algorithms; the physician view, which provides a more detailed
view on the data for multiple users’ activities as well as the possibility to add
and modify electronic health records; and the patient view, which displays
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Figure 8.1: The MedMon prototype GUI, using components of Knowing.

only a very brief summarization of the patient’s daily activity in order to give
feedback to the user about his achieved activity pensum each day (this view
is currently planned).

In the presented use case, the daily activity can be analyzed, processed
and long-term data analysis can be performed by using an aggregated view
of the results of the data mining process from the physician view and the
patient view.

The MedMon prototype system is not limited to medical applications but
provides a valuable tool for scientists having to deal with large amounts of
time series data. The source code of the Knowing framework and the MedMon
prototype in its current state are available via GitHub7.

7GitHub project page: https://github.com/knowing/
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Figure 8.2: The Sensor Import Wizard of MedMon.
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Part IV

Indexing
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Chapter 9

Introduction

In the previous chapters, features of different kinds have been introduced.
Features and Feature vectors thereby always played a central role in the
algorithms which is not very surprising as all kinds of signals (time series,
images, etc.) that have been the subject of the observation first have to
be transformed into a representation, so that the according algorithms can
be applied. In these cases, the feature vectors were usually represented as
vectors in an N-dimensional space. The features which are building the vector
thereby were either floating point values or integers. In either case, the feature
extraction process aimed at extracting relevant subsets of the original data.

Yet, this process has a very convenient side effect in that the data which
an algorithm has to treat is also reduced. In the case of image features for
example, a 512×512 image consists of 262 144 pixels. In other words, the
original data space comprises more than 250 000 dimensions.

Creating a feature extraction process for obtaining the so called relevant
subsets can thus also be seen as a transformation of the very high dimensional
original data space into a space with much lower dimensionality. If for example
a 144 dimensional feature vector is extracted from a 512×512 image, this
can also be seen as dimensionality transformation and (even more important)
reduction step that reduces the data space by a factor of more than 1 800.
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This does not only have the effect that the resulting feature vector can
act as a tool for solving certain problems, but it also means that for such
a problem, the data could be compressed by an impressing factor of more
than 1 800. Even though the data space was already compressed so far, it
is not a secret that feature spaces with more than some dozen dimensions
can hardly be indexed in a way, so that the application of an index structure
really enhances nearest neighbor queries compared to a sequential scan over
all the feature vectors. Of course, there exist some specialized solutions
like for example BOND [34] that can index several hundred dimensions.
Nevertheless most of such approaches are not generally applicable and pose
some restrictions. Such a restriction can for example contain the constraint
to only a certain kind of data distribution. This also leads to the fact that
especially image retrieval and image similarity tasks often use either no index
structure at all and iterate across the complete data set or employ queries
and hashing techniques [80, 69, 98, 7].

This is acceptable in use cases like search engines where for example 20
very similar but not necessarily the most similar images w.r.t the query image
should be returned. Yet there are use cases, where hashing is not acceptable
or simply not desired – like in medical imaging. Assuming that the data
set to be processed does not fit to any specialized solutions, the task of
similarity search leads into a dilemma where one can either perform an exact
but slow search (which is usually realized by a full scan over the data) or an
approximate and fast search.

This problem motivated the works which are presented in the following
sections. In 2002, BOND [34] was presented by using a column storage data
base instead of a row storage model. This promising approach was followed
and extended and finally ended in the work presented in BeyOND. Also, the
growing availability of solid state disks (SSDs) with dramatically different
access times have started to show some impact on the design of data bases
and index structures, as some paradigms that have been driving the according
models no longer hold for these kind of storage devices.

The techniques and methods proposed in the following chapters, take
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advantage of these changes. These works are published in [18] and [39].
Several findings of Section 10 were also influenced by previous works done in
[17] and [16] which are not part of this thesis.
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Chapter 10

BeyOND – unleashing BOND

10.1 Introduction

It is common opinion, that similarity search in high-dimensional data is
inherently difficult. The reasons for this finding, however, are not that widely
agreed upon. For example, it has been stated that high-dimensional similarity
search facilitated by partitioning or clustering based data structures cannot
beat the sequential scan [144]. This has been backed but also relativized by
some mainly theoretical studies [20, 14, 66, 4, 46, 66]. The essence of these
studies for research on data structures is: it depends on the characteristics of
the data distributions whether an index-based method is more suitable than a
sequential scan-based method or vice versa. This may not seem impressively
enlightening but, surprisingly enough, this key message has been neglected
in many research contributions over the last decade [3, 75, 15, 72, 36, 5].
Thus, it still appears to be well worth noting that nearest neighbor search is
meaningful if and only if the nearest neighbor of the arbitrary query object is
sufficiently different from its farthest neighbor. This is in general the case
whenever a data set exhibits a natural structure in clusters or groupings
of subsets of data, e.g., when the data is generated by several different
distributions. It is, however, not well studied which impact the relation
of relevant versus irrelevant attributes in a data space has. How do data
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structures behave, if the grouping of data is evident only in subspaces (built
by the “relevant” attributes) of the original data space whereas “irrelevant”
attributes do not contribute to discerning the different data groups from
each other. Furthermore, if there exist several clusters within a data set,
some attributes can be relevant for some clusters (i.e., useful for separation
of these clusters) and at the same time irrelevant for other clusters. These
important differentiations have been elaborated recently in [67, 19]. While
much effort has been spent on studying possibilities to facilitate efficient
similarity search in high-dimensional data, scarcely ever the question arose
how to support similarity search when the similarity of objects is based on a
subset of attributes only. Aside from fundamentally studying the behavior of
data structures in such settings, this is a practically highly relevant question.
It could be interesting for any user to search, e.g., in a database of images
represented by color-, shape-, and texture-descriptions, for objects similar to a
certain image where the similarity is related to the shape of the motifs only but
not to their color or even the color of the background. An online-store might
like to propose similar objects to a customer where similarity can be based on
different subsets of features. While in such scenarios, meaningful subspaces
can be suggested beforehand [83, 64], in other scenarios, possibly any subspace
could be interesting. For example, for different queries, different regions of
interest in a picture may be relevant. Since there are 2d possible subspaces of
a d-dimensional data set, it is practically impossible to provide data structures
for each of these possible subspaces in order to facilitate efficient similarity
search. Another application where efficient support of subspace similarity
queries is required are many subspace clustering algorithms [86] that rely on
searching for clusters in a potentially large number of different subsets of the
attributes. If efficient support of subspace range queries or subspace nearest
neighbor queries were available, virtually all subspace cluster approaches could
be accelerated considerably. Note that this problem is essentially different
from the feature selection problem [59, 86]. Established index structures [120]
are designed and optimized for the complete data space where all attributes
contribute to partitioning, clustering etc. For these data structures, the
space of queries facilitated by the index structure must be fixed prior to the
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construction of the index structure. Approaches addressing the problem of
subspace similarity search explicitly are [99, 85]. There, the authors propose
an adaptation of the VA-file [144] to the problem of subspace similarity
search. The basic idea of these approaches is to split the original VA-file
into d partial VA-files, where d is the data dimensionality, i.e. one file for
each dimension is obtained, each containing the approximation of the original
full-dimensional VA-file in that dimension. Based on the information of the
partial VA-files, upper and lower bounds of the true distance between data
objects and the query are derived. Subspace similarity queries are processed
by scanning only the relevant files in the order of relevance, i.e. the files are
ranked by the selectivity of the query in the corresponding dimension. As
long as there are still candidates that cannot be pruned or reported using the
upper and lower distance bounds, the next ranked file is read to improve the
distance approximations or (if all partial VA-files have been scanned) the exact
information of the candidates accessed to refine the exact distance. Another
approach to the problem is proposed in [93], although only ε-similarity range
queries are supported. The idea of this method is based on multiple pivot-
points to derive lower and upper bounds for distances. The bounds are
computed in a preprocessing step for a couple of pivot points. Essentially, this
approach allows to sequentially scan the database reading only the information
on lower and upper bounds and to refine the retrieved candidates in a post
processing step. A bottom-up combination of one-dimensional indices and a
top-down search in a full-dimensional index structure, restricted according to
the query, are discussed in [16, 17].

As opposed to all these approaches, BOND [34] is essentially also a search
strategy for the full-dimensional space enhancing the sequential scan. It is,
however, quite naturally possible to restrict a query to a given subspace,
since the basic idea of BOND is to use a column store (as it might be known
from NoSQL database systems). BOND ranks the columns according to their
potential impact on distances and prunes later columns if their impact becomes
too small to change the query result. By the design of this method, subspace
queries can be implicitly facilitated with the same architecture. However,
BOND is motivated by the application of metrics for image retrieval and,
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thus, requires certain properties of a data set which restricts the application
considerably:

1. The first proposed metric is only applicable to normalized histogram
data.

2. Using Euclidean distance, still the length of each vector is required for
pruning columns with low impact.

3. An enhanced Euclidean distance metric provides tighter pruning bounds,
but requires Zipfian distributed data (like color or gray scale histograms)
and certain resolve order of the columns in the database.

In this section, the focus is set on extending BOND by loosening the restric-
tions of its use for data sets and by improving the pruning power. In the
following, BOND and its deficiencies w.r.t. these aspects will be described
(Section 10.2). Afterwards the proposed extensions will be described in Sec-
tion 10.3. The extensions will be demonstrate and the improved performance
will be shown in Section 10.3.3.

10.2 BOND revisited

Processing multi-step queries using a filter-refinement framework, traditional
index approaches resolve the data of feature vectors row-wise (horizontally)
in order to obtain their exact representation. The main advantage of BOND
is that feature vectors are resolved column-wise (vertically) so that the values
of a feature vector v are obtained successively. Thus, the resolved part of
the feature vector is known exactly whereas the unresolved part has to be
approximated. This approach is inherently different from traditional tree-
indexing approaches where a feature vector is either completely approximated
or completely available. In order to avoid possibly unnecessary IO-operations,
traditional tree-indexing techniques aim at avoiding to resolve as many feature
vectors as possible which are not part of the result set. On the contrary,
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BOND starts with resolving all feature vectors column by column and tries
to approximate the remaining part of the feature vector. As soon as the
approximation yields a sufficiently high pruning power, false candidate feature
vectors can be pruned from the candidate set, so that the remaining dimensions
of these feature vectors need not be resolved. BOND supports regular k-NN
queries on the full data set as well as on weighted subspaces. Nevertheless,
the pruning bounds deteriorate in case of subspace queries.

The main goal of the pruning statistics used in BOND is to tighten the
approximations of the yet unresolved parts of the feature vector in order to
be able to prune false candidates from the candidate set as soon as possible
before resolving additional columns for this vector.

In the rest of the paper, the notation of [34] is followed, where q ∈ Rd

denotes a d-dimensional query vector and v ∈ Rd denotes an arbitrary d-
dimensional feature vector of the database. Furthermore, any database
vector v can be split into a resolved part v− ∈ Rm and an unresolved part
v+ ∈ Rd−m, so that v = v− ∪ v+. The variable m ∈ [1, d] denotes the amount
of columns that have been resolved so far. The distance S(q, v) between q
and v can thus be approximated by a composition of the exact distance plus
the approximation:

Sapprox(q, v) = S(q−, v−) + S(q+, v+) (10.1)

Assuming a k-nearest neighbor (k-NN) query, the resulting distance bounds
are then used to refine the candidate set in a traditional way, where all
candidates are pruned if their lower distance bound is greater than the kth
smallest upper bound. The distance S(q−, v−) between the known parts of
q and v can be computed precisely. Concerning the unknown part (v+), an
approximation for the lower and upper distance bounds to the query vector
q needs to be created. The computation of S(q+, v+) of course depends on
whether the upper or lower bound has to be computed.

The basic approach of BOND uses the application scenario of histogram
data, where the length of each data vector can safely be assumed to be 1.
Relaxing this condition, an extension of the basic approach assumes the unit
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hypercube [0, 1]d as the data space. This extension is based on the Euclidean
distance and does not rely on any distribution or assumption of the data set,
as it only depends on the query vector:

S1(a, b) =
∑

i
(ai − bi)2 (10.2)

S2(a, b) ≤
∑

i
max{ai, 1− ai}2 (10.3)

Yet the advantage of the independence from the data distribution and resolve
order is paid with the loss of pruning power, as the obtained bounds are:

Supper(q, v) ≤ S1(q−, v−) + S2(q+, v+) (10.4)
Slower(q, v) ≥ S1(q−, v−) + 0 (10.5)

The weakness of these bounds is obvious, especially for the lower bound
which assumes the distance 0 for the remaining, unresolved subspace and the
upper bound only takes the query vector into account and does not make
any assumptions on the database vector. A second extension relies on the
precomputed length of each feature vector v, which is stored in the database
additionally to the values of v, and a skewed Zipfian distribution of the data
set. This method is used as a reference as it provided the best results in the
original paper. In this case, a large number of distance computations and
IO-operations can be saved compared to the sequential scan. However, the
upper and lower distance bounds computed by this method quickly lose their
pruning power if the data distribution changes. Also this method strictly
requires a certain resolve order of the columns in the database, which is not
optimal in the case of other distributions or in case of correlated dimensions.
Changing the resolve order however is not an option, because this would
invalidate the proof for the correctness of the pruning bounds.

10.3 BeyOND BOND

One of the main limitations of BOND is the dependence on the data dis-
tribution. The distance approximations proposed in [34] work well as long
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as the data follows a skewed Zipfian distribution like in the case of color
histograms and if the database columns are resolved in decreasing order of the
query feature values. If either of the conditions is not fulfilled, BOND quickly
degenerates, i.e. the complete data set needs to be resolved to answer the
query. Thus, BeyOND extends the original idea of BOND in order to supply
a query system that allows an efficient execution of k-NN queries on data
sets that follow an arbitrary or unknown distribution, so that the following
restrictions are removed:

1. BeyOND does not depend on the data distribution, so any distance
metric can be employed that provides valid upper and lower distance
approximations.

2. The values vi of the feature vectors are no more restricted to vi ∈ [0, 1].

3. BeyOND does not rely on a specific resolve order of the query vector, so
more sophisticated resolve techniques can be applied to further increase
the pruning power.

Removing the first and third restriction also disables the possibility to use
the improved distance approximations of the original work. Thus, the weak
approximations shown in (10.4) and (10.5) had to be improved.

In the following, it is described how BeyOND combines the concepts
of BOND and the VA-file [144] by introducing Sub Cubes (Section 10.3.1),
supported by minimum bounding rectangles (MBRs) for certain sub cubes
(Section 10.3.2), based on a BOND-style column-store architecture. This
way, it is still possible to resolve the data set in a column wise manner. A
restriction that remains in BeyOND, however, is the embedding into a hyper
cube, so that the minimum and maximum values of each dimension need to
be known.
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10.3.1 Sub Cubes

The first proposed extension is to pick up the idea of the VA-file [144] by
splitting the cube once in each dimension. Thus the hyper cube describing
the feature space is partitioned into 2d pairwise disjunct sub cubes. Each sub
cube can be identified by the according Z-Order ID (Z-ID), which is stored
as a memory-efficient bit-representation. This Z-ID is stored additionally
to the values of each feature vector. The locations of the split positions in
each dimension are stored in separate arrays, so that quantile splits are also
supported. Assuming that the feature vectors are composed of 8 byte double
values, this means that the memory consumption of a feature vector increases
by a value of 1

64 bytes per dimension. It would also be possible to increase the
split level of the cubes even further. Nevertheless, each additional split also
increases the size of the Z-IDs to sd

8 bytes, where s denotes the amount of
splits. This leads to a trade-off between additional memory consumption from
larger Z-IDs and tighter approximations for the upper and lower bounds of
the distance computation due to smaller sub cubes. An evaluation about the
impact of additional split levels is shown in the evaluation (Section 10.3.3).
Given a Z-ID of a feature vector and the coordinate arrays containing the
split positions, it is a computationally cheap task to recreate the coordinates
of the according sub cube, so that the MBRs of potentially 2d sub cubes need
not be kept in memory but can be quickly recomputed on demand.

The sub cubes provide the advantage that the upper and lower distance
approximations need not be computed w.r.t. the complete hyper cube that
encloses the feature space but only between the cubes containing the query
vector and the feature vectors of the database. Thereby, the following two
cases need to be considered: Let Zq and Zv be the Z-IDs of the query vector
q and a vector v of the database.

Zq = Zv indicates that both q and v share the same sub cube, so the
upper bound of the distance approximation can be lowered to the borders
of this sub cube ((10.8)). The lower distance remains 0 for all unresolved
dimensions.
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Figure 10.1: Improvement of the upper/lower distance approximation in
case of no split (left), one split (center) and split with MBRs (right).

Zq 6= Zv implies that q and v are located in different cubes, so the lower
distance approximation can be raised to the minimum distance of q to the
sub cube containing v ((10.9)). The upper distance approximation is again
computed w.r.t. the bounds of the hyper cube containing v using (10.8).
Compared to approximating the upper distance w.r.t. the complete hyper
cube, this decreases the upper bound when both sub cubes share a common
plane, which is the case in d− 2 out of d− 1 cases (cf. Figure 10.1).

S
′

2(a, b) ≤
∑

max{|ai − clower
bi
|, |ai − cupper

bi
|}2 (10.6)

S
′′

2 (a, b) ≥
∑0, if ai ∈ [clower

bi
, cupper
bi

]
min{|ai − clower

bi
|, |ai − cupper

bi
|}2

(10.7)

S
′

upper(q, v) ≤ S1(q−, v−) + S
′

2(q+, v+) (10.8)
S

′

lower(q, v) ≥ S1(q−, v−) + S
′′

2 (q+, v+) (10.9)

where cupperbi
(clowerbi

) denotes the upper (lower) bound of the sub cube c
containing the feature vector b in dimension i.
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10.3.2 MBR Caching

In high-dimensional data sets that do not strongly cluster, the majority of the
2d sub cubes is occupied by at most one feature vector. In the few cases that
a sub cube is occupied by more feature vectors, it is proposed to evaluate
tightening the approximation of the sub cubes. Therefore, the set of sub cubes
is iterated which are occupied by more than one feature vector. Then, the
MBR for the according set of feature vectors is computed and the resulting
MBR is stored in a priority queue (PQ) which is sorted in descending order
w.r.t. the ranking function

f(MBR) = Vsub cube · card(MBR)
VMBR

(10.10)

where card(MBR) denotes the number of feature vectors contained in the
according MBR and V denotes the volume of the sub cube or MBR.

As the resulting MBRs cannot be derived from any fixed values similar
to the case of the split positions, at least 2 d-dimensional coordinates are
required to define each MBR, so that each MBR requires d · 16 bytes (again
assuming 8 byte double coordinates). Even though this seems to be a quite
large overhead, an MBR can be shared among all feature vectors of the
respective set. Thus, the memory increase is reduced to d·16

card(MBR) per feature
vector comprised by the MBR. As the MBR is associated with the respective
Z-ID, not even an additional memory pointer is required for the feature vector.

In order to define an upper limit for this additional memory consumption,
the size of the MBR queue PQ is limited to 1% of the amount of total feature
vectors in the database. Combined with the ranking function (10.10), it is
ensured that only a limited amount of MBRs is held in memory that contain
a large amount of feature vectors on the one hand and also a significantly
smaller volume compared to the surrounding sub cube on the other hand.
This threshold has to be chosen as a trade-off between pruning power and
additional memory consumption. Alternatively, the threshold can also be
chosen in absolute values if the maximum amount of memory should be
limited. In any case, the threshold should be chosen low enough so that
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either all MBRs can be kept in memory or it should be ensured that only
those MBRs are read from disk that approximate a fairly large amount of
feature vectors, so that the time needed to load the MBRs is still smaller
than resolving the respective feature vectors.

In order to use the tighter approximation provided by the MBRs, the
variables clower

bi
and cupper

bi
in (10.6) and (10.7) need to be filled with the

coordinates of the MBR instead with those of the sub cube, so that this
second extension integrates seamlessly into the computation of the distance
approximations.

10.3.3 Experiments

Data Sets

In the experiments, the proposed techniques were evaluated on three data
sets which are summarized in Table 10.1:

First, 27-dimensional color histograms extracted from the ALOI data set
[49] comprising 110,250 feature vectors (ALOI) were used. This data set poses
the hardest challenge as BOND is expected to perform best on this data set
as the color histograms follow a Zipfian distribution.

Second, a 20-dimensional synthetic clustered data set was used, com-
prising 500 000 feature vectors organized in 50 clusters, each following a
20-dimensional Gaussian distribution (CLUSTERED).

Finally, a data set from the area of medical imaging was used, contain-
ing 10 715 feature vectors with 110 dimensions (PHOG). The features were
provided from the work of [40] and represent gradient histograms which were
extracted from medical computer tomography images. The features were
already reduced in dimensionality by applying a principal component analysis
and the dimensions are ordered by decreasing value of the eigenvalues.
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Table 10.1: Data sets used in the evaluation.

Name Cols. Rows Distribution
ALOI 27 110 250 Zipfian
CLUSTERED 20 500 000 50 clusters
PHOG 110 10 715 gradient histograms

Evaluation

In the experiments 50 k-NN (k = 10) queries were submitted to the database.
During the processing the amount of feature vectors that were pruned after a
data column was resolved and the distance approximations were recomputed
was measured. The measurements shown in the Figure 10.2, 10.3 and 10.4
represent the averaged cumulative amount of feature vectors that were pruned
after a column was resolved. The area under the curves can thus be regarded
as the amount of data that does not need to be resolved from disk, whereas
the area above the curve indicates the amount of data that needs to be taken
into account for further refinement from disk and for computation of the
distance approximations. Thus, better approximations of the upper and lower
distance bounds yield better pruning power, so that more feature vectors can
be pruned at an early stage of the computation.

In the ideal case, only a few columns have to be resolved until the k final
nearest neighbors remain in the data set. Also, the final aim of the algorithm
is to prune as many feature vectors as possible at a very early stage of the
algorithm so that further data columns of this feature vector do not have to
be resolved.

In order to measure the impact of the VA-file approach and the MBR
caching, the following tests were performed: Both distance approximations
of the original implementation of BOND using the improved distance ap-
proximation (BOND) and the simple approximation (BOND Euclidean) were
evaluated. Then the contribution of the VA-File-approach was tested by mea-
suring the pruning power of a 1- and a 2-level VA-file (BOND+VA+median,
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Figure 10.2: Pruning power on ALOI.
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Figure 10.3: Pruning power on CLUSTERED.
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Figure 10.4: Pruning power on PHOG.

BOND+2level VA+median). Finally, the additional impact of MBR caching
was tested (BOND+VA+median+MBR).

Comparing the ALOI data set with the other data sets, it can be seen
that the original BOND performs as expected on histogram-like data sets.
Nevertheless, BOND resolves about half of the data on the CLUSTERED
data set and almost all columns on the PHOG data set. This shows the strong
dependence on the data distribution, which is addressed in the approach of
BeyOND.

In the first step, it is proposed to refine the simple Euclidean distance
approximation by using the sub cubes that were derived from the Z-ID being
saved additionally to the feature vector. While the improvement in the ALOI
data set is clearly visible, the impact on the CLUSTERED and PHOG data
sets is much higher (cf. Table 10.2, rows 1-3). Here, the amount of resolved
dimensions is lower using the CLUSTERED and PHOG data sets compared
to the ALOI data set.
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Table 10.2: Pruning power of the sub cube approach. The columns show
the data set, the amount of splits per dimension and the amount of resolved
columns (in percent), where more than 25%, 50% and more than 90% of the
candidates were pruned.

Data set Splits 25% 50% 90%
ALOI 1 16 (59%) 19 (70%) 23 (85%)
CLUSTER 1 7 (35%) 8 (40%) 10 (50%)
PHOG 1 45 (41%) 58 (53%) 80 (73%)
ALOI 2 7 (26%) 9 (33%) 21 (75%)
CLUSTER 2 1 (5%) 1 (5%) 1 (5%)
PHOG 2 45 (41%) 55 (50%) 79 (72%)

The intuitive approach to add more splits per dimension and thus decrease
the size of the sub cubes performs well with ALOI and CLUSTERED. Never-
theless, the improvement with the PHOG data set (cf. Table 10.2, rows 3-6) is
negligible, while obviously the CLUSTERED data set takes most advantage
from the quadratic growth of additional sub cubes (2d → 4d), which poses a
very good approximation of the clusters.

The second improvement pre-computes the MBRs in the case a sub cube
contains more than a single feature vector, the MBR would be small enough
and the maximum amount of MBRs is not reached yet. More sophisticated
methods to determine the maximum amount of MBRs could regard the vector
distribution within the cube, a minimum volume decrease, etc. In this case,
1% of the amount of feature vectors was used as a limit for the number of
created MBRs for the sub cubes with the largest volume decrease. Also, each
dimension was just split once. The result can be seen in Figure 10.2, 10.3
and 10.4, indicated by the dotted line, and in Table 10.3. Using the ALOI
data set, the initial pruning power in dimension 1 is even comparable to the
original BOND method. The CLUSTERED data set performs best as before,
as 98% of the data could be pruned at once. PHOG again poses the hardest
challenge. Yet, there is still an improvement compared to the basic sub cube
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Table 10.3: Pruning power of Sub Cubes + MBRs. The columns show the
data set, and the amount of resolved columns (in percent), where more than
25%, 50% and more than 90% of the candidates were pruned.

Data set 25% pruned 50% pruned 90% pruned
ALOI 1 (4%) 1 (4%) 10 (37%)
CLUSTER 1 (5%) 1 (5%) 1 (5%)
PHOG 37 (34%) 50 (45%) 77 (70%)

Table 10.4: Total amount of data viewed. The columns show the data set
and the amount of data resolved in case of 1 and 2 splits per dimensions and
the combination of 1 split and cached MBRs.

Data set 1 split 2 splits 1 split + MBR
ALOI 66.9% 38.3% 7.7%
CLUSTER 34.1% 1.6% 1.4%
PHOG 52.6% 52.3% 45.4%

approach (with 1 or 2 splits per dimension).

Table 10.4 shows the total amount of data that was resolved from the data
set. It can be seen that in case of ALOI and PHOG, it is more profitable to
extend the original idea of BOND with a 1-level VA-file (1 split per dimension)
using the technique of MBR caching instead of simply adding more layers (2
or more splits per dimension) which generates more sub cubes. Using the
CLUSTERED data set, there is almost no difference between the approaches
of more splits and MBR caching. Nevertheless, the solution of a single split
combined with MBRs offers more flexibility regarding the choice of MBRs
and the control of additional memory consumption than simply adding more
splits.
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Chapter 11

Impact of Solid State Drives on
Spatial Indexing

11.1 Introduction

Similarity search and spatial proximity queries are an important query type
in spatial, temporal and multimedia databases. In general, the task is to find
all spatially close neighbors to a query object in a database of d-dimensional
feature vectors. Example applications for this type of query might be to
select all sensors within a 5 mile diameter around some seismic distortion or
find the top-k similar songs in an audio database. For processing this type of
queries the simplest solution is to scan the complete database. However, for
large databases this leads to an enormous overhead in distance computations
as well as in I/O. To avoid this overhead, the database community proposed
spatial index structures [47, 22] organizing the database in order to avoid
comparing the query object to each feature vector in the database. The most
prominent spatial index structure is the R-Tree [58] and its extension the
R*-Tree [12]. Though many further extension of its principles have been
proposed in the last twenty years, the R-Tree is still the most used method
in the area. Additionally, it is implemented in several standard database
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systems like MySQL1, PostgreSQL via GiST[82] or Oracle2.

Despite its wide use, the R-Tree or related data structures do not solve the
problem of efficient similarity search by guaranteeing a logarithmic processing
time for similarity queries. Instead, it only provides an average logarithmic
search time. Factors having a negative impact on the search time include
high dimensionality and an inappropriate data distribution.

Besides the dimensionality, the hardware underlying the R-Tree plays an
important role when determining the performance advantage compared to
the sequential scan. A major difference between both methods exists due
to the predominant type of I/O-operations employed in both methods. The
sequential scan basically reads the complete database, ideally employing a
single seek on the disk. Thus, the transfer rate of the device is very important,
whereas the seek time and latency are rather negligible. Searching on a
hierarchical index like the R-Tree on the other hand is largely determined
by random access I/O to single node pages. Thus, the cost of a similarity
query on an R-tree is strongly dominated by the number of accessed nodes
because accessing the page usually requires much more time than transferring
its contents into main memory. Thus, in [23] the authors state that the
selectivity of a query in a hierarchical index should be less than 5% in order
to clearly outperform the sequential scan. In this case, considering only the
CPU time of both methods would still favor the tree because the amount of
distance computations is still several times smaller than for the scan. However,
since the search is I/O bound and sequentially reading the complete dataset
is faster than reading 5% of the data with random access operations, the scan
still yields a performance advantage. Nevertheless, the threshold of 5% is
subject to various system parameters like latency, seek time and transfer rate
of the underlying storage system. Since the performance characteristics of
available background storage devices have significantly changed within the
last ten years, the current threshold should be considerably different as well.
Additionally, unlike the simple scan an index structure usually utilizes the

1http://dev.mysql.com, R-Tree indexing for 2 dimensions
2http://www.oracle.com, Oracle Spatial: 2 to 4 dimensions
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disk caches to a larger extent than the sequential scan.

As a result the used hardware and system characteristics have a tremen-
dous effect on the performance behaviour of a spatial index structure like
the R-Tree. However, when discussing the performance benefits of spatial
index structures, most performance evaluations presume the operation on a
conventional single user workstation system without considering using modern
hardware components and a multi processor server workload.

In this chapter, the real-time performance improvement of the R*-Tree
will be examined under various aspects by using new hardware, i.e. flash
solid-state-drives (SSDs). As a first result of the examination, it will be
shown that simulating the system workload is mandatory in order to observe
the influence of different background storages due to cache utilization. It is
argued that the use of SSDs for storing spatial indexes is quite a realistic
architecture because the size of the available SSDs is now sufficiently large
even for very large index structures. Furthermore, datasets in large spatial or
multimedia search systems are have to perform more read that write queries
indicating that change operations do occur considerably less often than search
queries. Thus, using SSDs is feasible in spite of the limited writing capacity
of flash based storage modules. Another important factor is the affordable
price of flash SSDs, making the use of dedicated storage devices for indexing
rather inexpensive. Finally, the most important reason for using an SSD
for spatial indexing is its enormous improvement in access time compared
to conventional hard drives. While the transfer rate of a modern hard disk
drive (HDD) is quite comparable to an SSD, the access time of the SSD is
up to two orders of magnitude faster. Thus, hierarchical index structures
should significantly benefit more from this new storage device than scan-based
methods. The contributions of this chapter are:

• An examination of the query-time behaviour of the R*-Tree depending
on the server workload for background storages using an HDD and an
SSD.

• A discussion of the implications of the SSD’s characteristics on tuning
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the page size of the R*-Tree.

• A comparison of the effects of increasing dimensionality to the same
index run on both storage systems.

The rest of this chapter is organized as follows: In Section 11.2 related
work on using SSDs in databases is being discussed. Section 11.3 dicusses
the changes in the access path over the last two decades. In Section 11.4, the
testing environment for the experiments is formalized with results being shown
in displayed in Section 11.5. They demonstrate the effect of the hardware
advances to the performance of the R*-Tree w.r.t. system workload, page
size and dimensionality. the chapter concludes with a summary and ideas for
future work.

11.2 Related Work

Publications on SSDs usually focus on their main weakness: a limited number
of write operations which are relatively slow compared to reads. Lee et al [90]
compared the transaction performance of standard SQL I/O operations on
HDDs and SSDs and have found SSDs to be faster. However, the runtime
advantage of SSDs decreases with an increasing number of users due to
imperfect handling of write operations. As write operations are crucial for
the creation and updates of index structures, there has already been research
on how to design write structures for indexing on SSDs. In [146, 147] Wu et
al proposed a method to speed up the construction and maintenance of B-
Trees or R-Trees directly by using the flash translation layer (FTL). In [92]
Li et al introduced the FD-Tree, a B+-Tree derivate of three index layers
specialized to the use in flash discs.

In addition, various types of queries on SSDs have been analyzed. For join
operations, the writing problem prohibits an effect of the full advantage of fast
reads. Thus, [125, 134, 37] have developed methods for fast join processing
on flash devices.
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Write-independent queries profit stronger from exchanging HDDs by
SSDs. In [51] Goetz Graefe tested query runtimes of the B-Tree on SSDs
as opposed to HDDs and concluded that SSDs are not only faster but they
also induce a lower optimum page size. In [100] Nath and Kansal use a cost
model for the automatic adaption of flash-specialized B+-Tree types and their
parametrization (e.g. page sizes) to the varying access costs of different flash
devices. It depends on the tree’s height, the read and write access cost of the
disk and the node’s utility [57], the logarithm of records within a node.

11.3 Changes in the access path

In this section, the advances in computer architecture will be briefly reviewed
that have the strongest influence on the performance of spatial index structures.
For most types of similarity queries (apart from special applications like
similarity joins), it still holds that the performance bottleneck derives from
the I/O-operations. Thus, the focus will be on changes w.r.t. the access path
of the indexed data.

11.3.1 Caching

Commonly used cost models for estimating the I/O-costs of index structures
usually only regard caching strategies implemented directly into the proposed
method (like LRU-page buffers). But besides these explicit caching strategies,
all methods are implicitly using caching strategies provided by the underlying
operating system (OS) (unless explicitly coded differently) in order to avoid
time consuming I/O operations.

A typical disc read request proceeds according to the following pattern:
The process requests a certain part of a file to be read from disc. This request
is directed to the file system driver which first checks the cache manager
and virtual memory for the page. If the page is found (cache hit), the data
is returned immediately from the cache without needing to start a time
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consuming I/O operation. On the other hand, if the data could not be found
in the cache (cache miss), the disc driver requests the data to be read directly
from the device and thus from the next cache layer, the disc cache which is
implemented directly on the according device having a size of 8 – 128MB
(depending on type and manufacturer). If this request also results in a cache
miss, the data must finally be read from disc, causing the expected I/O cost
of seek- and transfer time of the requested blocks of data.

Another issue is that OS and disc cache managers analyze file access
patterns to a certain amount and start reading ahead data into the caches in
order to improve access speed for future reads.

11.3.2 New Storage Media

Thus, the most important part of the access path remains the used storage
medium of the data to be indexed. With the rise of SSDs as a new possibility
to store and access data some years ago, it was the aim to examine the per-
formance characteristics of common HDDs and SSDs in the context of spatial
index structures. Traditionally, three parameters are of crucial importance in
this scenario:

• Seek Time: The time to find the requested blocks on the medium.

• Latency: The time until the storage medium can access the requested
blocks.

• Transfer Rate: The time to transfer the requested blocks to the proces-
sor.

Hard Disk Drives

Commonly used hard Disk Drives (HDDs) store data on rapidly rotating
platters with magnetic surfaces. The data is accessed by positioning the head
of the right platter and then transfering the data. The seek time is the time
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required to position the head on the target platter and the correct track,
whereas latency is the time passing until the platter is rotated to the position
of the sector containing the requested data block. Just like the transfer rate,
the average latency is therefore dependent on the rotational speed of the
drive. In the last two decades, especially the transfer rate of HDDs increased
(∼ factor 40), whereas the seek time and latency only improved little (∼ factor
3).

Solid State Disks

In contrast to HDDs, flash Solid State Disks (SSDs) do not have any me-
chanically moving parts but use NAND flash memory chips to store the data.
Each flash chip is divided into several flash blocks consisting of several flash
pages. Operations on the drive are performed on page level. Due to these
characteristics the only latency for a read operation derives from the mapping
between logical block addresses and flash pages. This results in access times
which are typically two orders of magnitude faster than the ones from HDDs.
However, the structural characteristics only remove the seek process and boost
the latency time of a disk, thus flash SSDs are not (yet) able to outperform
HDDs w.r.t. the transfer rate until now.

Theoretical Implications

When accessing a large amount of (unfragmented) data sequentially, the main
parameter of interest is the transfer rate, since seek time and latency only
occur once. Thus this parameter has the highest influence on scan-based
methods like the sequential scan or the VA-File [144]. On the other hand a
hierarchical index structure has to access the data independently and in a
random access manner. In this case, the seek time and the latency are more
important for the performance of the index structure. This suggests that
hierarchical spatial indexes benefit by far more from the use of a flash SSD
than the sequential scan does. To confirm this assumption, in a first step the
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Figure 11.1: Fraction of data a spatial index structure can read before the
sequential scan becomes faster

performance of the sequential scan and spatial index structures are examined
from a theoretical point of view. Therefore the cost model from [23] is used to
calculate the percentage of data which can be accessed by an index structure
(via random access) while the sequential scan reads the whole dataset. Like
the authors of [23] state, a storage utilization of the index of 50% is assumed.
Besides the two storage devices used in the experimental section (summarized
in Table 11.1), two HDDs were included into the calculation. One as it was
used 20 years ago (latency + seek time = 20ms; transfer rate = 5MB/s)
and one as it was used 10 years ago (latency + seek time = 15.3ms; transfer
rate = 32MB/s). Figure 11.1 illustrates the fraction of the data a spatial
index can maximally access before the sequential scan becomes faster. For
each storage device, several page sizes are compared as this has an impact on
the break-even point. Also note that the optimal page size for an index is
mainly dependent on the characteristics of the indexed dataset. The figure
shows that the advances in the HDD technology of the last decades makes it
harder for an index structure to perform faster than the sequential scan. This
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fraction is nowadays far below the commonly assumed 5% rate (cf. [23]).

With the new technology of SSDs this trend is reversed. Following the
above considerations, a spatial index theoretically still performs better on
an SSD than the scan even if the accessed amount of data is far above 20%
for a common page size (≥ 8KB). Thus, on SSDs a spatial index should
outperform the sequential scan even if a large amount of the data has to be
visited as it is the case for data which is hard to index (e.g. high dimensional).
However, the real-time performance of a spatial query usually depends on
several other system characteristics like the cache utilization. Therefore, the
performance advantage of an SSD is empirically examined compared to a
modern HDD in the next section.

11.4 Evaluation

11.4.1 Datasets

For the majority of the experiments, a random test database was created. Since
tree-based spatial index structures are most challenged by poorly clustering
datasets, uniformly distributed datasets were chosen. Clustered datasets were
not simulated in order to avoid overfitting of the distributions to the used
index. All experiments involve 1 million 10-dimensional feature vectors unless
explicitly stated otherwise, i.e. N = 106, d = 10.

11.4.2 Hardware

To support the assumptions, several settings were tested on two storage
devices, one of each class. The HDD was a Western Digital Caviar Blue
(WD2500AAJS) SATA Drive with 8MB cache, 250GB memory and 7200 rpm.
The SSD was a Corsair P128 (CMFSSD-128GBG2D) SATA II drive with
128MB cache and 128GB memory. For further specifications see Table 11.1.
All experiments were run on a machine with two Intel Xeon 5160 3.00GHz
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Table 11.1: Performance characteristics of used devices

HDD SSD
Avg. seek time 8.9ms none
Avg. latency 4.2ms 0.09ms
Transfer rate 93.5MB/s 94.7MB/s

Dual-Core processors and 4GB of main memory.

11.4.3 Software

The test data was inserted and stored in a persistent R*-Tree of the ELKI
framework [2]. Each accessed node in the tree results in one access to
the underlying storage system. Correspondingly, the experiments showing
the results of the sequential scan were programmed to access the storage
device only once. An important aspect of the following results is that the
implemented search system is running on top of an operating system allowing
concurrent processes. In this work, openSUSE 10.3 (X86-64) was used
for all following tests. Additionally, most experiments were also evaluated
on Windows XP to test whether a different operating system would cause
significantly different results. However the results between both operating
systems were quite comparable and thus, the results presented in this section
were all measured on the LINUX system. As mentioned in the previous
section there are multiple caching systems for background storages. Thus
the experiments include the caching mechanism provided by the underlying
hardware and operating system. Even though using a disk cache is a realistic
assumption, having an otherwise idle system is definately not. Thinking of an
index structure as a component of a database server, it is a very unrealistic
assumption that the only process currently running is the search preocess itself.
An experiment with just a single active process leads to an unrealistically
large amount of available main memory which the operating system will
transparently use for caching parts of the index or the dataset. Furthermore,
if the system is only occupied with the test program, it is also quite likely that
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its caches will be exclusively used for parts of the index. However, assuming
the search process as part of a larger server system, the system will share the
resources with other processes as well. Considering the sequential scan, it is
possible to scan a large data file in a consecutive way if there are no other
concurrent processes accessing the disk as well. However, on a real database
server, it is rather unlikely that there is no other process or thread requesting
to access the disk as well. Thus, in order to provide fair answering times,
most systems will interrupt large scans causing multiple disk accesses for the
sequential scan as well. Thus, cache utilization, available main memory and
concurrent reads will be limited by the system load caused by other database
server functions and other processes. A further aspect limiting the resources
for a single query is the concurrent processing of several user requests.

To conclude, in order to make sure that the tests are performed under
more realistic conditions, it is required to limit the available resources for
answering a query and to simulate a server workload consisting of multiple
concurrent processes. To achieve this result, main memory was allocated
and locked to make sure that the test system only had access to 1GB of
main memory. Furthermore, to simulate concurrent queries being answered
at the same time, the test program was multi threaded for answering multiple
queries at the same time. The effect of the number of parallel queries will
be discussed in the following section. The query performance was measured
based on the average answering times of k-nearest neighbor queries with the
number of retrieved neighbors k set to 10.

11.5 Experimental Results

In this section, the results of the experiments are presented in which similarity
queries based on a flash SSD and HDD background storage were executed. The
first test starts with measuring the utilization of the background storage when
scaling the system load. Afterwards, the impact of the changed performance
characteristics on tuning the page size of the R*-Tree is measured. In a
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Figure 11.2: Query time for an increasing number of parallel queries and
databases (k = 10, d = 10, N = 106, uniformly distributed data)

final set of experiments, the influence of a changed size of k and different
dimensionalities of the dataset will be evaluated.

11.5.1 System Load and Storage Device Utilization

As mentioned in the previous section, it is expected that the workload of the
database server has an important influence on the effect of the background
storage and thus the query times. If the system load is rather low, the
database server is expected to spend more resources like caches and main
memory to answering the query. Thus, the performance of the background
storage should have a smaller impact. To simulate different levels of work
load, 5 000 queries were performed to an R*-Tree comparing both devices
while changing the number of concurrent threads processing the queries. Each
R*-Tree stores one million 10-dimensional feature vectors. It is assumed that
each thread has its own instance of the R*-Tree, which simulates queries
on different index structures. The results of this experiment can be seen in
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Figure 11.2.

While the performance advantage of the SSD-based tree is rather small
for a single query thread, the gap between both devices rapidly increases with
the number of simultaneous threads. The rather small difference for a limited
number of threads can be explained due to the good cache utilization for a
small level of concurrency. However, with an increasing number of concurrent
threads, it becomes more and more unlikely that a cache hit for the data in of
a dedicated thread occurs so that the amount of cache misses for a dedicated
thread will increase. Thus, the effect of the cache is strongly decreasing and
for a number of 100 threads the impact of the storage device can clearly be
observed. For more than 100 concurrent threads, the average answering time
of a query is about one order of magnitude faster on the SSD than on the
HDD. For the tests w.r.t. data dimensionality and the number of retrieved
nearest neighbors k 100 concurrent thread were used in the following.
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11.5.2 Impact of the Page Size

In this section, the impact of the page size used for the background storage of
the R*-Tree indices will be evaluated. Selecting a suitable page size can have
a large impact on the query performance of a spatial index structure. The
impact of the page size can be explained as follows. A large page size reduces
the overhead of accessing a page on the background storage compared to the
transfer time of the page content. In the extreme case the page size is large
enough to keep the complete dataset and thus, the R*-Tree degenerates into
the sequential scan on the root page. From a CPU-time point of view, small
pages are usually more beneficial because their spatial approximations usually
have a smaller spatial extension. Therefore, it is less likely that they intersect
with the query region. In combination with the smaller amount of stored
data objects this leads to a decreased number of distance computations.

In the following, the optimal page size for the R*-tree based on the flash
SSD compared to the HDD should be evaluated. Therefore R*-trees for page
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sizes varying from 2 kB to 256 kB are generated first. Each tree contains the
same dataset of one million 10-dimensional, uniformly distributed feature
vectors. To test the query performance, 480 10-nearest-neighbor queries were
simultaneousely performed by 30 concurrent threads for both storage devices.
The measured average processing time per query can be seen in Figure 11.3.

On the HDD the results indicate that the pages should be chosen consid-
erably larger than the 4 kB disk pages of the underlying file system. The best
results were achieved with a page size of 64 kB closely followed by 128 kB
pages. Due to the significantly shorter access times of the flash SSD, its opti-
mal page size is expected to be smaller than for the hard drive. As expected,
the best results where measured when using a page size of 32 kB on the SSD.
Due to the comparatively large dimension of the test data, this amounts to a
considerably smaller discrepancy between HDD and SSD than an earlier study
on B-Trees (256 vs. 2 kB for only 1 dimension) [51]. However, in general the
performance of the SSD indicates no strong decrease in performance for 8 to
128 kB.

This is a remarkable observation as it shows a clear difference between
the SSD and a classical HDD as the performance of an R*-Tree stored on a
HDD depends much more on a suitable page size compared to the situation
observed on the SSDs. For example, the query time of ∼2 700ms on the hard
drive based on a system with a page size of 4 kB is more than five times
higher compared to the index stored with a page size of 64 kB (∼500ms). In
contrast, the runtimes of the observed optimal page size of 32 kB and the
worst page size of 2 kB on the SSD only differ by the factor two. Due to the
fast access times of the SSD, its performance is more independent from the
choice of the proper page size.

11.5.3 Query Size

In the next experiment, the impact of different query sizes on the runtime
of the spatial index was tested on the two different devices. Therefore the
runtime for different parameters of k was measured. Figure 11.4 visualizes the
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results of the experiment. In this case it can be observed the total difference
in runtime increases for a higher value of k. Interestingly, the query time of
the index on the SSD is always an order of magnitude faster than the one on
the HDD.

11.5.4 Dimensionality

One of the most interesting questions for spatial index structures is the
dimensionality of the data. As the key idea of an index structure is to improve
access speed, it is crucial to know, at which dimensionality of the data a
sequential scan over all the data should be favored over the index. Generally,
with increasing dimensionality of a dataset, the overlap between pages of an
R*-Tree increases more and more which leads to a higher rate of pages which
have to be visited at query time. This directly leads to a decreased selectivity
and this again to an increase in query time.

Section 11.3.2 already gave an indication, that R*-Trees can still perform
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better than the sequential scan on SSDs even for a large ratio of read pages.
To test this hypothesis test were performed on uniformly distributed data sets
with increasing dimensionality. For each test the query time was measured
for both the sequential scan and for the R*-Tree on HDD and SSD. The
test results can be found in Figure 11.5. As expected, the query time using
a sequential scan increases roughly linearly (due to increasing data volume
and increased amount of distance computations) in both cases, with the SSD
performing faster than the HDD. Since the transfer rate of both media is
comparable, this effect is probably caused by interruptions of the sequential
scan, resulting in new seeks. Due to the almost non existent seek times in
case of the SSD, such interrupts hardly impact the scan on SSD whereas each
additional seek causes remarkable impact in case of the HDD.

Comparing the performance of the R*-Tree on both devices shows that
the index is around one order of magnitude faster in case of the SSD than on
the HDD, regardless of the dimensionality. This is caused by the lower seek
and latency times of SSDs which play a central role in the performance of
spatial index structures.

The observations of this chapter conclude with a comparison of the query
times of the R*-Tree and the sequential scan for each device. On the HDD,
the scan outperforms the index if the data consists of more than 11 dimen-
sions. In case of the SSD, the break-even point can be observed when the
dimensionality of the data grows larger than 17. This result confirms the
theoretical assumptions from the previous sections and shows that spatial
index structures can greatly benefit from the use of SSDs.
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Part V

Conclusions
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Chapter 12

Summary

Knowledge discovery and data mining in large medical data bases are chal-
lenging tasks. Supporting clinicians by evaluating and providing tools for
computer aided diagnosis, algorithms for medical image computing and meth-
ods for data analysis is more than just the automation of daily routines.
Research and development in this area should also be regarded as a way to
extract and recover knowledge that might otherwise be undiscoverable due to
the huge amount and the fast growth of the data. The topics of this thesis
focus on data mining and indexing aspects in medical imaging and medical
sensor data. The following part of this chapter concludes the thesis and
outlines the main contributions of the presented methods.

12.1 Preliminaries

In Part I the three major parts of the thesis are briefly introduced. First, the
need for techniques in the field of medical imaging is motivated. Afterwards,
an example of long term monitoring patients is outlined to motivate the need
of data mining techniques for data which is obtained for activity recognition
and classification in long term patient monitoring. As a lot of techniques
organize data in feature vectors with high or very high dimensions, the need
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for indexing is motivated in this part as well.

12.2 Medical Imaging (Part II)

Part II focuses on the domain of medical imaging and more precisely on
Computer Tomography data.

Section 3 introduces the history and the different imaging modalities in
the area of medical imaging in more depth and afterwards presents two novel
methods for the localization of a single CT slice along the z-axis of the body.

In Section 4 the topic of slice localization is motivated by the need for
retrieval methods which are independent of the height of a patient and also
based on image similarity only as it cannot be assumed that there is any
reliable annotation about the body position in the meta data of an image.
The proposed methods are evaluated on a very large set of CT volume scans
obtained from clinical daily use. In order to achieve detection rates that are
within the constraints stated by an expert medical user, feature vectors first
need to be extracted from the CT slices. The vectors are then used as query
objects to perform similarity search queries in the data base. Afterwards,
the impact of using the information obtained from multiple adjacent slices
is evaluated. As a reference, the method is compared to a state of the art
method that is attempting to accomplish the same issue by using large volume
sets. As a result it can be observed that the proposed method is more stable
and more generic than the reference as it does not depend on any landmarks
that have to be detected in advance. Furthermore it only requires a single
slice for the same task by achieving the same or a better results.

Another topic introduced in Section 5 of the thesis is the localization of
the vertebrae on single CT slices. Research on that topic is motivated by
the observation that there are a lot of methods operating on the spine and
the vertebral bodies. However these algorithm usually have to be initialized
with the information about the location of the spine. By providing this
new method, there is now the possibility to combine this method with the
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algorithms mentioned before in order to determine the location of the spine
automatically. This information can for example be used to initialize the
afore mentioned algorithms without human intervention.

12.3 Medical Sensor Data (Part III)

Part III of the thesis focuses on the analysis of medical sensor data and a
framework for faster prototype development.

Section 7 deals with the classification of physical activity by analyzing
samples, recorded by a small 3d accelerometer. Even though the field of
activity classification is not completely new, the special setting of this use
case (comparatively low recording rate and the special position of the sensor
mounted at the ankle) poses a challenging task. After evaluating related
work, a new method is proposed that combines known features with newly
developed features in order to build a novel feature description. The related
approach and the new approach are evaluated on a data set obtained from
volunteers who recorded more than 10 h training data in their spare time.

Section 8 describes a software which is based on a common platform
that allows the integration of common data mining techniques. This work
is motivated by the original aim of the use case in this chapter which is not
restricted to the classification of physical activity but also to deliver this
information to the end users. However, the user group of end users had to
be divided strictly in two separate classes: One group representing attending
physicians which require the possibility to obtain a quick overview of the
data as well as the possibility to have a very detailed view to the data. The
other target group covers the patients wearing the sensors. For this user
group, it is desired to have a very simple interface which allows the patient a
quick information if he/she has already fulfilled a certain amount of physical
activity. The advantages in this approach are that some major data mining
frameworks can be integrated and that the view which is presented to an end
user can be replaced very easily. In the current state, the software provides
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a view for scientists so that algorithm chains can be build visually but also
a prototype view for attending doctors who want to classify data obtained
from the accelerometers.

Concluding it can be said that the open Knowing framework allows faster
integration of data mining techniques into the development process so that
information and data can be managed more effectively. The integration of
Knowing in the application of medical monitoring is demonstrated by the
MedMon application which outlines the bridge between data mining and
development. Currently, more well known data mining techniques are added
and the UI handling of the framework is continuously improved for a more
convenient user experience.

12.4 Indexing (Part IV)

In Part IV, a technique is proposed to enhance nearest neighbor search and
indexing in (very) high dimensional data sets.

Section 9 introduces the topic by building the bridge between medical
imaging and sensor data to the indexing topic. The section also explains the
drawbacks of the BOND method and why it was regarded to be worth to
improve the method.

In Section 10 BeyOND is explained in depth as a technique to perform
exact nearest neighbor queries in very high dimensional spaces comprising far
more than 10 dimensions. This approach differs from hashing methods in so far
that BeyOND provides the ability to find the guaranteed k nearest neighbors
instead of approximate results only. The method itself is a generalization of
BOND which was proposed in 2002 in the work of [34] and combines this
work with ideas of the VA-File which was published in [144].

Section 11 addresses the impact of modern hardware on established index-
ing techniques. The growing popularity of Solid State Disks (SSDs) in the
past years also affected the research in the data base community as access
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paradigms that have been driving the indexing methods for decades began
to change. In the mean time, it is common to apply SSDs together with
conventional HDDs to improve data base performance if the performance
of classical index structures is a bottleneck in an application. In this work,
the performance impact of modern hardware to classical spatial indexing is
evaluated. The key contributions of this work shows that spatial indices can
now be created on data spaces with a dimensionality that is almost 60%
higher than in the case of classical HDDs. A possibly even larger contribu-
tion is the performance evaluation of index structures in cases of heavy or
unexpected load situations. Such situations can be observed on large web
data base hosting clusters for several reasons. For example, global and sea-
sonal events like Christmas cause an increase of server load used at shopping
websites across all over the world at the same time. Local events like very
heavy load on single web sites can be caused by criminal intent like in the
case of distributed denial of service (DDoS) attacks or due to a sudden and
unexpected increase of traffic to the web page. In such cases SSDs are not the
solution to the problem, but due to behavior in case of massively increasing
parallel requests, they allow a graceful degrade and thus increase the reaction
time until a site turns completely unavailable. In case of HDDs, there is no
graceful degrade so that the time to react is very short and the point where
the site is unavailable is reached rather suddenly as soon as no more system
memory is available.
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Chapter 13

Future Directions

After having discussed the contributions of the work so far, this section
addresses the ideas for further research in the field of medical imaging and
sensor data as well as in the domain of indexing high dimensional data.

13.1 Medical Imaging

Even though the work concerning the slice detection in Section 4 has already
reached a very high level of accuracy, there are still some topics for future
research that have not yet been addressed:

• Currently the 2-stage knn search which is applied for the prediction step
involves the complete data base. In order to reduce the search space, it
should be evaluated if some clustering techniques could be applied on
the data base. The clustering could be used to identify almost identical
feature vectors which could be replaced with a single representative.
At the current stage, the search does not take a long time, however as
the knn search involves the complete data base, the search time scales
linearly with the size of the data base.

• With the slice detection showing such convincing results on Computer
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Tomography data, there has been a considerable amount of requests
asking for an extension of the method to data obtained from MRI
scanners. Due to the lack of access to such data it has not yet been
possible to evaluate or adapt the technique to such data. However,
discussions with experts in this area allow to make an educated guess
that the method can be applied to MR data as well.

• The extension of the technique to subset queries is yet far from fully
exploited. Combining different adjacent feature vectors can be done in
many different ways. For example, the query feature vectors could first
be analyzed if they contain some outliers which could be excluded from
the query.

Also the topic of the detection of the vertebrae still has some potential
for future research:

• An improved selection of the candidate window poses a major and
possibly simple way to improve the result even further. This could for
example be done by machine learning and pattern recognition algorithms
that create an improved ranking for the candidate boxes.

• The shrinking process currently relies on a set of fixed parameters. Even
though it currently provides a good baseline, it should be evaluated if a
more sophisticated approach could yield better or more stable results.

• After the detection of a vertebra, the next steps could include the clas-
sification of the vertebra. First tests have already shown a classification
rate of about 80% with an accuracy of ±1 vertebra. Combining the
vertebra detection with slice localization could improve the accuracy
dramatically.

• It should also be evaluated whether algorithms from the field of face
detection could also be used to detect the very specific shape of the
vertebra on an image.
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13.2 Medical Sensor Data

Even though the new way to classify physical activity shows already very
convincing results, there are still several topics for future research:

• There is of course the aim to increase the data set in terms of more
activities, more test users and more observations per user.

• The current method provides assistance for analyzing and classifying
long term activity logs. Yet, it would be a great contribution if some
measurement unit would be integrated to quantify the intensity of an
activity. By combining the quantity with the intensities of activities, a
daily pensum could be defined and controlled much more precisely as it
is possible at the current state.

• New units of measurement could also be included in the analysis which
could be obtained either directly by the sensor (skin temperature, pulse,
etc.) or from external resources like from a mobile phone. For example
it would be possible to combine GPS information obtained by a mobile
phone in order to estimate means of transportation between different
activities. This could for example be used in a recommendation system
to improve physical activities in daily routines.

Concerning the Knowing and MedMon frameworks there is of course still
some work to do:

• Future plans cover the implementation of plug-ins to integrate more
data mining frameworks and an improvement of the user interface.

• Another topic that could be addressed in the near future is the extension
of the computation model to a cloud-computing schema. In cases of
slow client computers or very CPU intensive tasks, this could provide a
viable alternative to changing the underlying hardware.
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• The MedMon application which is based on the framework will soon be
adapted to requirements posed by attending doctors. Also the improve-
ment of usability on all interfaces is subject to further development.

13.3 Indexing

Same as the topics above, BeyOND still poses several possibilities for en-
hancement as there are still some restrictions left concerning the data space
that should be removed or at least loosened.

• Currently, the resolve order of the columns is independent of the query
vector. The question, whether there is a possibility to improve the
pruning power by applying a resolve order that also depends on the
query feature vector and not (only) on the data set is still unanswered
and poses a challenging task for future research.

• Current trends in research dealing with high dimensional data tend
to focus on hashing which usually cannot guarantee to find the exact
nearest neighbors but only approximate nearest neighbors. However
it might be possible to combine the ideas of BeyOND with hashing
techniques to improve the approximations used for pruning.

• The impact of the storage layer in the case of BeyOND is also an
issue that should be addressed in the future. As data in such an index
structure is stored no more row wise but column wise per dimension, a
single block on the disc shares information of much more feature vectors.
Assuming a 100 dimensional feature vector with double values, a 4 kB
block in a row wise storage can store 5 feature vectors (5 · 100 · 8 Bytes).
In a column store the same 4 kB block shares information of up to 512
vectors (4 kB/8 B). This means that if such feature vector should be
resolved completely, a row wise storage accesses a single block, while
the column wise storage has to read a single block per dimension.
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Image Licenses

Figure 4.1: The body planes schema in Figure 4.1 (p. 24) originates from
http://en.wikipedia.org/wiki/File:Human_anatomy_planes.svg, by wikime-
dia.org user “YassineMrabet”. The figure is licenced under the Creative
Commons Attribution-Share Alike 3.0 Unported Licence:
http://creativecommons.org/licenses/by-sa/3.0/

Figure 4.2: The human model in Figure 4.2 (p. 26) originates from http://
commons.wikimedia.org/wiki/File:Skeleton_whole_body_ant_lat_views.svg,
Patrick J. Lynch, medical illustrator; C. Carl Jaffe, MD, cardiologist. The
figure is licensed under the Creative Commons Attribution 2.5 License 2006:
http://creativecommons.org/licenses/by/2.5/
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