47 research outputs found

    Adaptive and learning-based formation control of swarm robots

    Get PDF
    Autonomous aerial and wheeled mobile robots play a major role in tasks such as search and rescue, transportation, monitoring, and inspection. However, these operations are faced with a few open challenges including robust autonomy, and adaptive coordination based on the environment and operating conditions, particularly in swarm robots with limited communication and perception capabilities. Furthermore, the computational complexity increases exponentially with the number of robots in the swarm. This thesis examines two different aspects of the formation control problem. On the one hand, we investigate how formation could be performed by swarm robots with limited communication and perception (e.g., Crazyflie nano quadrotor). On the other hand, we explore human-swarm interaction (HSI) and different shared-control mechanisms between human and swarm robots (e.g., BristleBot) for artistic creation. In particular, we combine bio-inspired (i.e., flocking, foraging) techniques with learning-based control strategies (using artificial neural networks) for adaptive control of multi- robots. We first review how learning-based control and networked dynamical systems can be used to assign distributed and decentralized policies to individual robots such that the desired formation emerges from their collective behavior. We proceed by presenting a novel flocking control for UAV swarm using deep reinforcement learning. We formulate the flocking formation problem as a partially observable Markov decision process (POMDP), and consider a leader-follower configuration, where consensus among all UAVs is used to train a shared control policy, and each UAV performs actions based on the local information it collects. In addition, to avoid collision among UAVs and guarantee flocking and navigation, a reward function is added with the global flocking maintenance, mutual reward, and a collision penalty. We adapt deep deterministic policy gradient (DDPG) with centralized training and decentralized execution to obtain the flocking control policy using actor-critic networks and a global state space matrix. In the context of swarm robotics in arts, we investigate how the formation paradigm can serve as an interaction modality for artists to aesthetically utilize swarms. In particular, we explore particle swarm optimization (PSO) and random walk to control the communication between a team of robots with swarming behavior for musical creation

    Distributed Neurodynamics-Based Backstepping Optimal Control for Robust Constrained Consensus of Underactuated Underwater Vehicles Fleet

    Full text link
    Robust constrained formation tracking control of underactuated underwater vehicles (UUVs) fleet in three-dimensional space is a challenging but practical problem. To address this problem, this paper develops a novel consensus based optimal coordination protocol and a robust controller, which adopts a hierarchical architecture. On the top layer, the spherical coordinate transform is introduced to tackle the nonholonomic constraint, and then a distributed optimal motion coordination strategy is developed. As a result, the optimal formation tracking of UUVs fleet can be achieved, and the constraints are fulfilled. To realize the generated optimal commands better and, meanwhile, deal with the underactuation, at the lower-level control loop a neurodynamics based robust backstepping controller is designed, and in particular, the issue of "explosion of terms" appearing in conventional backstepping based controllers is avoided and control activities are improved. The stability of the overall UUVs formation system is established to ensure that all the states of the UUVs are uniformly ultimately bounded in the presence of unknown disturbances. Finally, extensive simulation comparisons are made to illustrate the superiority and effectiveness of the derived optimal formation tracking protocol.Comment: This paper is accepted by IEEE Transactions on Cybernetic

    Development of Path Following and Cooperative Motion Control Algorithms for Autonomous Underwater Vehicles

    Get PDF
    Research on autonomous underwater vehicle (AUV) is motivating and challenging owing to their specific applications such as defence, mine counter measure, pipeline inspections, risky missions e.g. oceanographic observations, bathymetric surveys, ocean floor analysis, military uses, and recovery of lost man-made objects. Motion control of AUVs is concerned with navigation, path following and co-operative motion control problems. A number of control complexities are encountered in AUV motion control such as nonlinearities in mass matrix, hydrodynamic terms and ocean currents. These pose challenges to develop efficient control algorithms such that the accurate path following task and effective group co-ordination can be achieved in face of parametric uncertainties and disturbances and communication constraints in acoustic medium. This thesis first proposes development of a number of path following control laws and new co-operative motion control algorithms for achieving successful motion control objectives. These algorithms are potential function based proportional derivative path following control laws, adaptive trajectory based formation control, formation control of multiple AUVs steering towards a safety region, mathematical potential function based flocking control and fuzzy potential function based flocking control. Development of a path following control algorithm aims at generating appropriate control law, such that an AUV tracks a predefined desired path. In this thesis first path following control laws are developed for an underactuated (the number of inputs are lesser than the degrees of freedom) AUV. A potential function based proportional derivative (PFPD) control law is derived to govern the motion of the AUV in an obstacle-rich environment (environment populated by obstacles). For obstacle avoidance, a mathematical potential function is exploited, which provides a repulsive force between the AUV and the solid obstacles intersecting the desired path. Simulations were carried out considering a special type of AUV i.e. Omni Directional Intelligent Navigator (ODIN) to study the efficacy of the developed PFPD controller. For achieving more accuracy in the path following performance, a new controller (potential function based augmented proportional derivative, PFAPD) has been designed by the mass matrix augmentation with PFPD control law. Simulations were made and the results obtained with PFAPD controller are compared with that of PFPD controlle

    Research on the Design of Financial Management Model Based on SOM-PNN Driven by Digital Economy

    Get PDF
    This study proposes a novel financial risk prediction methodology by harnessing the power of self-organizing mapping (SOM) neural network and probabilistic neural network (PNN). The amalgamation of SOM and PNN\u27s advantageous characteristics is seamlessly integrated into the algorithm posited within this paper. In order to collate and prognosticate data, the SOM network employs a two-dimensional topological framework comprising of two layers of neurons. Subsequently, the PNN model expeditiously furnishes the final classification outcomes by processing the output results obtained from the SOM model. The technique developed atop this composite model offers accelerated computation, effectively mitigates the impact of noisy samples, and significantly augments model accuracy. Finally, the effectiveness of the proposed method was demonstrated through a comprehensive financial risk analysis of listed companies from 2016 to 2020. The experimental results show that the SOM-PNN method has achieved high accuracy in predicting the financial difficulties experienced by traditional companies in the selected company samples, exceeding 85%. Especially when the sample data is insufficient, its accuracy reaches 80%, surpassing other algorithms. Statement: In the modern era, financial institutions use big data to perform background analysis and review, continuously optimize, and adjust, in order to introduce quantitative analysis methods into every link of risk management as far as possible. This allows financial institutions to quickly achieve balance in the game process of risk and income, and achieve Profit maximization in local or even more space

    A Novel Double Layered Hybrid Multi-Robot Framework for Guidance and Navigation of Unmanned Surface Vehicles in a Practical Maritime Environment

    Get PDF
    Formation control and cooperative motion planning are two major research areas currently being used in multi robot motion planning and coordination. The current study proposes a hybrid framework for guidance and navigation of swarm of unmanned surface vehicles (USVs) by combining the key characteristics of formation control and cooperative motion planning. In this framework, two layers of offline planning and online planning are integrated and applied on a practical marine environment. In offline planning, an optimal path is generated from a constrained A* path planning approach, which is later smoothed using a spline. This optimal trajectory is fed as an input for the online planning where virtual target (VT) based multi-agent guidance framework is used to navigate the swarm of USVs. This VT approach combined with a potential theory based swarm aggregation technique provides a robust methodology of global and local collision avoidance based on known positions of the USVs. The combined approach is evaluated with the different number of USVs to understand the effectiveness of the approach from the perspective of practicality, safety and robustness.</jats:p

    A survey of formation control and motion planning of multiple unmanned vehicles

    Get PDF
    The increasing deployment of multiple unmanned vehicles systems has generated large research interest in recent decades. This paper therefore provides a detailed survey to review a range of techniques related to the operation of multi-vehicle systems in different environmental domains, including land based, aerospace and marine with the specific focuses placed on formation control and cooperative motion planning. Differing from other related papers, this paper pays a special attention to the collision avoidance problem and specifically discusses and reviews those methods that adopt flexible formation shape to achieve collision avoidance for multi-vehicle systems. In the conclusions, some open research areas with suggested technologies have been proposed to facilitate the future research development

    Data Mining Applications to Fault Diagnosis in Power Electronic Systems: A Systematic Review

    Get PDF

    The computerization of archaeology: survey on AI techniques

    Full text link
    This paper analyses the application of artificial intelligence techniques to various areas of archaeology and more specifically: a) The use of software tools as a creative stimulus for the organization of exhibitions; the use of humanoid robots and holographic displays as guides that interact and involve museum visitors; b) The analysis of methods for the classification of fragments found in archaeological excavations and for the reconstruction of ceramics, with the recomposition of the parts of text missing from historical documents and epigraphs; c) The cataloguing and study of human remains to understand the social and historical context of belonging with the demonstration of the effectiveness of the AI techniques used; d) The detection of particularly difficult terrestrial archaeological sites with the analysis of the architectures of the Artificial Neural Networks most suitable for solving the problems presented by the site; the design of a study for the exploration of marine archaeological sites, located at depths that cannot be reached by man, through the construction of a freely explorable 3D version
    corecore