3 research outputs found

    Hierarchical Cluster-Based FIFO Asynchronous Data Transfer Technique for Reducing Congestion for Energy Efficient State Wireless Sensor Network-HAEEW

    Get PDF
    The applications of WSN can be quiet numerous. In applications like battlefield monitoring, grid power generation, health systems, sensors are deployed on large scale. During such deployment, energy efficiency must be proficient, which requires clustering, in the WSN architecture. Clustering architecture requires maintenance of sensor nodes due to alfunctioning of sensor which becomes depleted of energy. As some nodes leaves and some are being replaced, congestion is introduced in the network due the limited processing capability of memory, computations, and bandwidth condition. This paper proposes one of the energy efficient clustering techniques (HAEEW), using asynchronous data transfer (ADT), which has been modeled from data transfer technique (EEHCR), and using hierarchical clustering. Our model uses synchronization in clock time queries in one and each iterations round time, to determine cluster head, and head-set member formation, using Ad hoc on-demand energy aware routing protocols (AOERP) to make decision. In each iteration, the head-set members receives message request from neighboring nodes to confirm their average distance estimation, in which to transmit aggregated data to the base station. In a sensor deployment, which is aimed for data collection, control and management of sensor nodes, play a vital role, where nodes can be adjusted to boost energy in the network life time. We used matlab for simulations analysis of our result

    Survivability Strategies for Emerging Wireless Networks With Data Mining Techniques: a Case Study With NetLogo and RapidMiner

    Get PDF
    [EN] Emerging wireless networks have brought Internet and communications to more users and areas. Some of the most relevant emerging wireless technologies are Worldwide Interoperability for Microwave Access, Long-Term Evolution Advanced, and ad hoc and mesh networks. An open challenge is to ensure the reliability and robustness of these networks when individual components fail. The survivability and performance of these networks can be especially relevant when emergencies arise in rural areas, for example supporting communications during a medical emergency. This can be done by anticipating failures and finding alternative solutions. This paper proposes using big data analytics techniques, such as decision trees for detecting nodes that are likely to fail, and so avoid them when routing traffic. This can improve the survivability and performance of networks. The current approach is illustrated with an agent based simulator of wireless networks developed with NetLogo and data mining processes designed with RapidMiner. According to the simulated experimentation, the current approach reduced the communication failures by 51.6% when incorporating rule induction for predicting the most reliable routes.This work was supported in part by the research project Construccion de un framework para agilizar el desarrollo de aplicaciones moviles en el a mbito de la salud through the University of Zaragoza and Foundation Ibercaja under Grant JIUZ-2017-TEC-03, in part by the Universidad de Zaragoza, in part by the Fundacion Bancaria Ibercaja, in part by the Fundacion CAI in the Programa Ibercaja-CAI de Estancias de Investigacion under Grant IT1/18, in part by the program Estancias de movilidad en el extranjero Jose Castillejo para jovenes doctores through the Spanish Ministry of Education, Culture and Sport under Grant CAS17/00005, in part by the Desarrollo Colaborativo de Soluciones AAL through the Spanish Ministry of Economy and Competitiveness under Grant TIN2014-57028-R, in part by the Organismo Autonomo Programas Educativos Europeos under Grant 2013-1-CZ1-GRU06-14277, and in part by the Ministerio de Economia y Competitividad in the Programa Estatal de Fomento de la Investigacion Cientifica y Tecnica de Excelencia, Subprograma Estatal de Generacion de Conocimiento within the project under Grant TIN2017-84802-C2-1-P.García-Magariño, I.; Gray, G.; Lacuesta Gilabert, R.; Lloret, J. (2018). Survivability Strategies for Emerging Wireless Networks With Data Mining Techniques: a Case Study With NetLogo and RapidMiner. IEEE Access. 6:27958-27970. https://doi.org/10.1109/ACCESS.2018.2825954S2795827970

    An adaptive reliable transport protocol based on automatic reSend reQuest(ASQ) technique for wireless sensor networks

    No full text
    There are many wireless sensor network(WSN) applications which require reliable data transfer between the nodes. Several techniques including link level retransmission, error correction methods and hybrid Automatic Repeat re- Quest(ARQ) were introduced into the wireless sensor networks for ensuring reliability. In this paper, we use Automatic reSend request(ASQ) technique with regular acknowledgement to design reliable end-to-end communication protocol, called Adaptive Reliable Transport(ARTP) protocol, for WSNs. Besides ensuring reliability, objective of ARTP protocol is to ensure message stream FIFO at the receiver side instead of the byte stream FIFO used in TCP/IP protocol suite. To realize this objective, a new protocol stack has been used in the ARTP protocol. The ARTP protocol saves energy without affecting the throughput by sending three different types of acknowledgements, viz. ACK, NACK and FNACK with semantics different from that existing in the literature currently and adapting to the network conditions. Additionally, the protocol controls flow based on the receiver's feedback and congestion by holding ACK messages. To the best of our knowledge, there has been little or no attempt to build a receiver controlled regularly acknowledged reliable communication protocol. We have carried out extensive simulation studies of our protocol using Castalia simulator, and the study shows that our protocol performs better than related protocols in wireless/wire line networks, in terms of throughput and energy efficiency
    corecore