680 research outputs found

    Thermal dosimetry for bladder hyperthermia treatment. An overview.

    Get PDF
    The urinary bladder is a fluid-filled organ. This makes, on the one hand, the internal surface of the bladder wall relatively easy to heat and ensures in most cases a relatively homogeneous temperature distribution; on the other hand the variable volume, organ motion, and moving fluid cause artefacts for most non-invasive thermometry methods, and require additional efforts in planning accurate thermal treatment of bladder cancer. We give an overview of the thermometry methods currently used and investigated for hyperthermia treatments of bladder cancer, and discuss their advantages and disadvantages within the context of the specific disease (muscle-invasive or non-muscle-invasive bladder cancer) and the heating technique used. The role of treatment simulation to determine the thermal dose delivered is also discussed. Generally speaking, invasive measurement methods are more accurate than non-invasive methods, but provide more limited spatial information; therefore, a combination of both is desirable, preferably supplemented by simulations. Current efforts at research and clinical centres continue to improve non-invasive thermometry methods and the reliability of treatment planning and control software. Due to the challenges in measuring temperature across the non-stationary bladder wall and surrounding tissues, more research is needed to increase our knowledge about the penetration depth and typical heating pattern of the various hyperthermia devices, in order to further improve treatments. The ability to better determine the delivered thermal dose will enable clinicians to investigate the optimal treatment parameters, and consequentially, to give better controlled, thus even more reliable and effective, thermal treatments

    Respiratory organ motion in interventional MRI : tracking, guiding and modeling

    Get PDF
    Respiratory organ motion is one of the major challenges in interventional MRI, particularly in interventions with therapeutic ultrasound in the abdominal region. High-intensity focused ultrasound found an application in interventional MRI for noninvasive treatments of different abnormalities. In order to guide surgical and treatment interventions, organ motion imaging and modeling is commonly required before a treatment start. Accurate tracking of organ motion during various interventional MRI procedures is prerequisite for a successful outcome and safe therapy. In this thesis, an attempt has been made to develop approaches using focused ultrasound which could be used in future clinically for the treatment of abdominal organs, such as the liver and the kidney. Two distinct methods have been presented with its ex vivo and in vivo treatment results. In the first method, an MR-based pencil-beam navigator has been used to track organ motion and provide the motion information for acoustic focal point steering, while in the second approach a hybrid imaging using both ultrasound and magnetic resonance imaging was combined for advanced guiding capabilities. Organ motion modeling and four-dimensional imaging of organ motion is increasingly required before the surgical interventions. However, due to the current safety limitations and hardware restrictions, the MR acquisition of a time-resolved sequence of volumetric images is not possible with high temporal and spatial resolution. A novel multislice acquisition scheme that is based on a two-dimensional navigator, instead of a commonly used pencil-beam navigator, was devised to acquire the data slices and the corresponding navigator simultaneously using a CAIPIRINHA parallel imaging method. The acquisition duration for four-dimensional dataset sampling is reduced compared to the existing approaches, while the image contrast and quality are improved as well. Tracking respiratory organ motion is required in interventional procedures and during MR imaging of moving organs. An MR-based navigator is commonly used, however, it is usually associated with image artifacts, such as signal voids. Spectrally selective navigators can come in handy in cases where the imaging organ is surrounding with an adipose tissue, because it can provide an indirect measure of organ motion. A novel spectrally selective navigator based on a crossed-pair navigator has been developed. Experiments show the advantages of the application of this novel navigator for the volumetric imaging of the liver in vivo, where this navigator was used to gate the gradient-recalled echo sequence

    Modeling and MR-thermometry for adaptive hyperthermia in cervical Cancer

    Get PDF

    Development of Targeted Liposomal Formulation Approaches for Enhanced Colorectal Cancer Therapy

    Get PDF
    Colorectal cancer (CRC) is the 4th most commonly detected cancer in the USA. Despite promising advances, the 5-year survival rate for the metastatic disease remains dismal (40⁰C with ultrasound contrast agents and bacterial attachments can improve the real-time chemo-immunotherapy of CRC. Towards these goals, we investigated the following specific aims in murine models of colon cancer: 1) Develop echogenic-LTSL (E-LTSL) for real-time ultrasound-enhanced reporting of tumor temperature and doxorubicin delivery, 2) Utilize tumor homing Salmonella typhimurium for LTSL delivery and enhanced chemo-immunotherapy with High Intensity Focused Ultrasound (HIFU) tumor heating (~42°C), and 3) Investigate the ability of magnetic bacteria Magnetospirillim magneticum (AMB-1) to aid LTSL tumor drug delivery under magnetic guidance. Our data showed that intratumoral vascular contrast of E-LTSL as a function of temperature and doxorubicin delivery was strongly correlated, enabling robust estimation of temporal variation in colon tumor temperature and drug delivery. LTSL attachment didn’t impact Salmonella viability and improved chemo-immunotherapy outcomes in murine colon cancers by promoting the population of M1 macrophages with HIFU heating. Finally, the use of magnetic guidance for AMB-LTSL significantly reduced the colon cancer viability by enhancing cellular and tumor localizations of doxorubicin. In conclusion, we found that multifunctional LTSL formulations significantly improved the CRC treatment outcomes in murine models by aiding the real-time monitoring and removing the resistive and suppressive tumor microenvironment features

    DARKNESS: A Microwave Kinetic Inductance Detector Integral Field Spectrograph for High-Contrast Astronomy

    Get PDF
    We present DARKNESS (the DARK-speckle Near-infrared Energy-resolving Superconducting Spectrophotometer), the first of several planned integral field spectrographs to use optical/near-infrared Microwave Kinetic Inductance Detectors (MKIDs) for high-contrast imaging. The photon counting and simultaneous low-resolution spectroscopy provided by MKIDs will enable real-time speckle control techniques and post-processing speckle suppression at framerates capable of resolving the atmospheric speckles that currently limit high-contrast imaging from the ground. DARKNESS is now operational behind the PALM-3000 extreme adaptive optics system and the Stellar Double Coronagraph at Palomar Observatory. Here we describe the motivation, design, and characterization of the instrument, early on-sky results, and future prospects.Comment: 17 pages, 17 figures. PASP Publishe

    Doctor of Philosophy

    Get PDF
    dissertationThis dissertation presents original research that improves the ability of magnetic resonance imaging (MRI) to measure temperature in aqueous tissue using the proton resonance frequency (PRF) shift and T1 measurements in fat tissue in order to monitor focused ultrasound (FUS) treatments. The inherent errors involved in measuring the longitudinal relaxation time T1 using the variable flip angle method with a two-dimensional (2D) acquisition are presented. The edges of the slice profile can contribute a significant amount of signal for large flip angles at steady state, which causes significant errors in the T1 estimate. Only a narrow range of flip angle combinations provided accurate T1 estimates. Respiration motion causes phase artifacts, which lead to errors when measuring temperature changes using the PRF method. A respiration correction method for 3D imaging temperature of the breast is presented. Free induction decay (FID) navigators were used to measure and correct phase offsets induced by respiration. The precision of PRF temperature measurements within the breast was improved by an average factor of 2.1 with final temperature precision of approximately 1 °C. Locating the position of the ultrasound focus in MR coordinates of an ultrasound transducer with multiple degrees of freedom can be difficult. A rapid method for predicting the position using 3 tracker coils with a special MRI pulse iv sequence is presented. The Euclidean transformation of the coil's current positions to their calibration positions was used to predict the current focus position. The focus position was predicted to within approximately 2.1 mm in less than 1 s. MRI typically has tradeoffs between imaging field of view and spatial and temporal resolution. A method for acquiring a large field of view with high spatial and temporal resolution is presented. This method used a multiecho pseudo-golden angle stack of stars imaging sequence to acquire the large field of view with high spatial resolution and k-space weighted image contrast (KWIC) to increase the temporal resolution. The pseudo-golden angle allowed for removal of artifacts introduced by the KWIC reconstruction algorithm. The multiple echoes allowed for high readout bandwidth to reduce blurring due to off resonance and chemical shift as well as provide separate water/fat images, estimates of the initial signal magnitude M(0), T2 * time constant, and combination of echo phases. The combined echo phases provided significant improvement to the PRF temperature precision, and ranged from ~0.3-1.0 °C within human breast. M(0) and T2 * values can possibly be used as a measure of temperature in fat
    corecore