1,113 research outputs found

    An Adaptive Markov Chain Monte Carlo Method for GARCH Model

    Full text link
    We propose a method to construct a proposal density for the Metropolis-Hastings algorithm in Markov Chain Monte Carlo (MCMC) simulations of the GARCH model. The proposal density is constructed adaptively by using the data sampled by the MCMC metho d itself. It turns out that autocorrelations between the data generated with our adaptive proposal density are greatly reduced. Thus it is concluded that the adaptive construction method is very efficient and works well for the MCMC simulations of the GARCH model.Comment: 11 pages, 6 figure

    Bayesian Adaptive Hamiltonian Monte Carlo with an Application to High-Dimensional BEKK GARCH Models

    Get PDF
    Hamiltonian Monte Carlo (HMC) is a recent statistical procedure to sample from complex distributions. Distant proposal draws are taken in a equence of steps following the Hamiltonian dynamics of the underlying parameter space, often yielding superior mixing properties of the resulting Markov chain. However, its performance can deteriorate sharply with the degree of irregularity of the underlying likelihood due to its lack of local adaptability in the parameter space. Riemann Manifold HMC (RMHMC), a locally adaptive version of HMC, alleviates this problem, but at a substantially increased computational cost that can become prohibitive in high-dimensional scenarios. In this paper we propose the Adaptive HMC (AHMC), an alternative inferential method based on HMC that is both fast and locally adaptive, combining the advantages of both HMC and RMHMC. The benefits become more pronounced with higher dimensionality of the parameter space and with the degree of irregularity of the underlying likelihood surface. We show that AHMC satisfies detailed balance for a valid MCMC scheme and provide a comparison with RMHMC in terms of effective sample size, highlighting substantial efficiency gains of AHMC. Simulation examples and an application of the BEKK GARCH model show the usefulness of the new posterior sampler.High-dimensional joint sampling; Markov chain Monte Carlo; Multivariate GARCH

    Bayesian Adaptive Hamiltonian Monte Carlo with an Application to High-Dimensional BEKK GARCH Models

    Get PDF
    Hamiltonian Monte Carlo (HMC) is a recent statistical procedure to sample from complex distributions. Distant proposal draws are taken in a equence of steps following the Hamiltonian dynamics of the underlying parameter space, often yielding superior mixing properties of the resulting Markov chain. However, its performance can deteriorate sharply with the degree of irregularity of the underlying likelihood due to its lack of local adaptability in the parameter space. Riemann Manifold HMC (RMHMC), a locally adaptive version of HMC, alleviates this problem, but at a substantially increased computational cost that can become prohibitive in high-dimensional scenarios. In this paper we propose the Adaptive HMC (AHMC), an alternative inferential method based on HMC that is both fast and locally adaptive, combining the advantages of both HMC and RMHMC. The benefits become more pronounced with higher dimensionality of the parameter space and with the degree of irregularity of the underlying likelihood surface. We show that AHMC satisfies detailed balance for a valid MCMC scheme and provide a comparison with RMHMC in terms of effective sample size, highlighting substantial efficiency gains of AHMC. Simulation examples and an application of the BEKK GARCH model show the usefulness of the new posterior sampler.High-dimensional joint sampling; Markov chain Monte Carlo; Multivariate GARCH

    Bayesian Inference on QGARCH Model Using the Adaptive Construction Scheme

    Full text link
    We study the performance of the adaptive construction scheme for a Bayesian inference on the Quadratic GARCH model which introduces the asymmetry in time series dynamics. In the adaptive construction scheme a proposal density in the Metropolis-Hastings algorithm is constructed adaptively by changing the parameters of the density to fit the posterior density. Using artificial QGARCH data we infer the QGARCH parameters by applying the adaptive construction scheme to the Bayesian inference of QGARCH model. We find that the adaptive construction scheme samples QGARCH parameters effectively, i.e. correlations between the sampled data are very small. We conclude that the adaptive construction scheme is an efficient method to the Bayesian estimation of the QGARCH model.Comment: ICIS200

    Bayesian inference with an adaptive proposal density for GARCH models

    Full text link
    We perform the Bayesian inference of a GARCH model by the Metropolis-Hastings algorithm with an adaptive proposal density. The adaptive proposal density is assumed to be the Student's t-distribution and the distribution parameters are evaluated by using the data sampled during the simulation. We apply the method for the QGARCH model which is one of asymmetric GARCH models and make empirical studies for for Nikkei 225, DAX and Hang indexes. We find that autocorrelation times from our method are very small, thus the method is very efficient for generating uncorrelated Monte Carlo data. The results from the QGARCH model show that all the three indexes show the leverage effect, i.e. the volatility is high after negative observations
    • …
    corecore