3,413 research outputs found

    Classifying sequences by the optimized dissimilarity space embedding approach: a case study on the solubility analysis of the E. coli proteome

    Full text link
    We evaluate a version of the recently-proposed classification system named Optimized Dissimilarity Space Embedding (ODSE) that operates in the input space of sequences of generic objects. The ODSE system has been originally presented as a classification system for patterns represented as labeled graphs. However, since ODSE is founded on the dissimilarity space representation of the input data, the classifier can be easily adapted to any input domain where it is possible to define a meaningful dissimilarity measure. Here we demonstrate the effectiveness of the ODSE classifier for sequences by considering an application dealing with the recognition of the solubility degree of the Escherichia coli proteome. Solubility, or analogously aggregation propensity, is an important property of protein molecules, which is intimately related to the mechanisms underlying the chemico-physical process of folding. Each protein of our dataset is initially associated with a solubility degree and it is represented as a sequence of symbols, denoting the 20 amino acid residues. The herein obtained computational results, which we stress that have been achieved with no context-dependent tuning of the ODSE system, confirm the validity and generality of the ODSE-based approach for structured data classification.Comment: 10 pages, 49 reference

    Classification of Incomplete Data Using the Fuzzy ARTMAP Neural Network

    Full text link
    The fuzzy ARTMAP neural network is used to classify data that is incomplete in one or more ways. These include a limited number of training cases, missing components, missing class labels, and missing classes. Modifications for dealing with such incomplete data are introduced, and performance is assessed on an emitter identification task using a data base of radar pulsesDefense Advanced Research Projects Agency and the Office of Naval Research (N00014-95-1-0409) (S.G. and M.A.R); National Science Foundation (IRI-97-20333) (S.G.); Natural Sciences and Engineerging Research Council of Canada (E.G.); Office of Naval Research (N00014-95-1-0657

    Adaptive kNN using Expected Accuracy for Classification of Geo-Spatial Data

    Full text link
    The k-Nearest Neighbor (kNN) classification approach is conceptually simple - yet widely applied since it often performs well in practical applications. However, using a global constant k does not always provide an optimal solution, e.g., for datasets with an irregular density distribution of data points. This paper proposes an adaptive kNN classifier where k is chosen dynamically for each instance (point) to be classified, such that the expected accuracy of classification is maximized. We define the expected accuracy as the accuracy of a set of structurally similar observations. An arbitrary similarity function can be used to find these observations. We introduce and evaluate different similarity functions. For the evaluation, we use five different classification tasks based on geo-spatial data. Each classification task consists of (tens of) thousands of items. We demonstrate, that the presented expected accuracy measures can be a good estimator for kNN performance, and the proposed adaptive kNN classifier outperforms common kNN and previously introduced adaptive kNN algorithms. Also, we show that the range of considered k can be significantly reduced to speed up the algorithm without negative influence on classification accuracy

    A Novel Progressive Multi-label Classifier for Classincremental Data

    Full text link
    In this paper, a progressive learning algorithm for multi-label classification to learn new labels while retaining the knowledge of previous labels is designed. New output neurons corresponding to new labels are added and the neural network connections and parameters are automatically restructured as if the label has been introduced from the beginning. This work is the first of the kind in multi-label classifier for class-incremental learning. It is useful for real-world applications such as robotics where streaming data are available and the number of labels is often unknown. Based on the Extreme Learning Machine framework, a novel universal classifier with plug and play capabilities for progressive multi-label classification is developed. Experimental results on various benchmark synthetic and real datasets validate the efficiency and effectiveness of our proposed algorithm.Comment: 5 pages, 3 figures, 4 table

    On the Efficiency of the Neuro-Fuzzy Classifier for User Knowledge Modeling Systems

    Full text link
    User knowledge modeling systems are used as the most effective technology for grabbing new user's attention. Moreover, the quality of service (QOS) is increased by these intelligent services. This paper proposes two user knowledge classifiers based on artificial neural networks used as one of the influential parts of knowledge modeling systems. We employed multi-layer perceptron (MLP) and adaptive neural fuzzy inference system (ANFIS) as the classifiers. Moreover, we used real data contains the user's degree of study time, repetition number, their performance in exam, as well as the learning percentage, as our classifier's inputs. Compared with well-known methods like KNN and Bayesian classifiers used in other research with the same data sets, our experiments present better performance. Although, the number of samples in the train set is not large enough, the performance of the neuro-fuzzy classifier in the test set is 98.6% which is the best result in comparison with others. However, the comparison of MLP toward the ANFIS results presents performance reduction, although the MLP performance is more efficient than other methods like Bayesian and KNN. As our goal is evaluating and reporting the efficiency of a neuro-fuzzy classifier for user knowledge modeling systems, we utilized many different evaluation metrics such as Receiver Operating Characteristic and the Area Under its Curve, Total Accuracy, and Kappa statistics
    • …
    corecore