69,691 research outputs found

    Weak Secrecy in the Multi-Way Untrusted Relay Channel with Compute-and-Forward

    Full text link
    We investigate the problem of secure communications in a Gaussian multi-way relay channel applying the compute-and-forward scheme using nested lattice codes. All nodes employ half-duplex operation and can exchange confidential messages only via an untrusted relay. The relay is assumed to be honest but curious, i.e., an eavesdropper that conforms to the system rules and applies the intended relaying scheme. We start with the general case of the single-input multiple-output (SIMO) L-user multi-way relay channel and provide an achievable secrecy rate region under a weak secrecy criterion. We show that the securely achievable sum rate is equivalent to the difference between the computation rate and the multiple access channel (MAC) capacity. Particularly, we show that all nodes must encode their messages such that the common computation rate tuple falls outside the MAC capacity region of the relay. We provide results for the single-input single-output (SISO) and the multiple-input single-input (MISO) L-user multi-way relay channel as well as the two-way relay channel. We discuss these results and show the dependency between channel realization and achievable secrecy rate. We further compare our result to available results in the literature for different schemes and show that the proposed scheme operates close to the compute-and-forward rate without secrecy.Comment: submitted to JSAC Special Issue on Fundamental Approaches to Network Coding in Wireless Communication System

    Hash-and-Forward Relaying for Two-Way Relay Channel

    Full text link
    This paper considers a communication network comprised of two nodes, which have no mutual direct communication links, communicating two-way with the aid of a common relay node (RN), also known as separated two-way relay (TWR) channel. We first recall a cut-set outer bound for the set of rates in the context of this network topology assuming full-duplex transmission capabilities. Then, we derive a new achievable rate region based on hash-and-forward (HF) relaying where the RN does not attempt to decode but instead hashes its received signal, and show that under certain channel conditions it coincides with Shannon's inner-bound for the two-way channel [1]. Moreover, for binary adder TWR channel with additive noise at the nodes and the RN we provide a detailed capacity achieving coding scheme based on structure codes.Comment: 5 pages, 2 figures, submitted to the IEEE ISIT'11 conferenc

    Strongly Secure Communications Over the Two-Way Wiretap Channel

    Full text link
    We consider the problem of secure communications over the two-way wiretap channel under a strong secrecy criterion. We improve existing results by developing an achievable region based on strategies that exploit both the interference at the eavesdropper's terminal and cooperation between legitimate users. We leverage the notion of channel resolvability for the multiple-access channel to analyze cooperative jamming and we show that the artificial noise created by cooperative jamming induces a source of common randomness that can be used for secret-key agreement. We illustrate the gain provided by this coding technique in the case of the Gaussian two-way wiretap channel, and we show significant improvements for some channel configurations.Comment: 11 pages, 7 figures, submitted to IEEE Transactions on Information Forensics and Security, Special Issue: "Using the Physical Layer for Securing the Next Generation of Communication Systems

    Fundamental Constraints on Multicast Capacity Regions

    Full text link
    Much of the existing work on the broadcast channel focuses only on the sending of private messages. In this work we examine the scenario where the sender also wishes to transmit common messages to subsets of receivers. For an L user broadcast channel there are 2L - 1 subsets of receivers and correspondingly 2L - 1 independent messages. The set of achievable rates for this channel is a 2L - 1 dimensional region. There are fundamental constraints on the geometry of this region. For example, observe that if the transmitter is able to simultaneously send L rate-one private messages, error-free to all receivers, then by sending the same information in each message, it must be able to send a single rate-one common message, error-free to all receivers. This swapping of private and common messages illustrates that for any broadcast channel, the inclusion of a point R* in the achievable rate region implies the achievability of a set of other points that are not merely component-wise less than R*. We formerly define this set and characterize it for L = 2 and L = 3. Whereas for L = 2 all the points in the set arise only from operations relating to swapping private and common messages, for L = 3 a form of network coding is required

    Distributed Channel Synthesis

    Full text link
    Two familiar notions of correlation are rediscovered as the extreme operating points for distributed synthesis of a discrete memoryless channel, in which a stochastic channel output is generated based on a compressed description of the channel input. Wyner's common information is the minimum description rate needed. However, when common randomness independent of the input is available, the necessary description rate reduces to Shannon's mutual information. This work characterizes the optimal trade-off between the amount of common randomness used and the required rate of description. We also include a number of related derivations, including the effect of limited local randomness, rate requirements for secrecy, applications to game theory, and new insights into common information duality. Our proof makes use of a soft covering lemma, known in the literature for its role in quantifying the resolvability of a channel. The direct proof (achievability) constructs a feasible joint distribution over all parts of the system using a soft covering, from which the behavior of the encoder and decoder is inferred, with no explicit reference to joint typicality or binning. Of auxiliary interest, this work also generalizes and strengthens this soft covering tool.Comment: To appear in IEEE Trans. on Information Theory (submitted Aug., 2012, accepted July, 2013), 26 pages, using IEEEtran.cl

    An Achievable Rate Region for the Broadcast Channel with Feedback

    Full text link
    A single-letter achievable rate region is proposed for the two-receiver discrete memoryless broadcast channel with generalized feedback. The coding strategy involves block-Markov superposition coding, using Marton's coding scheme for the broadcast channel without feedback as the starting point. If the message rates in the Marton scheme are too high to be decoded at the end of a block, each receiver is left with a list of messages compatible with its output. Resolution information is sent in the following block to enable each receiver to resolve its list. The key observation is that the resolution information of the first receiver is correlated with that of the second. This correlated information is efficiently transmitted via joint source-channel coding, using ideas similar to the Han-Costa coding scheme. Using the result, we obtain an achievable rate region for the stochastically degraded AWGN broadcast channel with noisy feedback from only one receiver. It is shown that this region is strictly larger than the no-feedback capacity region.Comment: To appear in IEEE Transactions on Information Theory. Contains example of AWGN Broadcast Channel with noisy feedbac
    • …
    corecore