18,355 research outputs found

    DOTA: A Dynamically-Operated Photonic Tensor Core for Energy-Efficient Transformer Accelerator

    Full text link
    The wide adoption and significant computing resource consumption of attention-based Transformers, e.g., Vision Transformer and large language models, have driven the demands for efficient hardware accelerators. While electronic accelerators have been commonly used, there is a growing interest in exploring photonics as an alternative technology due to its high energy efficiency and ultra-fast processing speed. Optical neural networks (ONNs) have demonstrated promising results for convolutional neural network (CNN) workloads that only require weight-static linear operations. However, they fail to efficiently support Transformer architectures with attention operations due to the lack of ability to process dynamic full-range tensor multiplication. In this work, we propose a customized high-performance and energy-efficient photonic Transformer accelerator, DOTA. To overcome the fundamental limitation of existing ONNs, we introduce a novel photonic tensor core, consisting of a crossbar array of interference-based optical vector dot-product engines, that supports highly-parallel, dynamic, and full-range matrix-matrix multiplication. Our comprehensive evaluation demonstrates that DOTA achieves a >4x energy and a >10x latency reduction compared to prior photonic accelerators, and delivers over 20x energy reduction and 2 to 3 orders of magnitude lower latency compared to the electronic Transformer accelerator. Our work highlights the immense potential of photonic computing for efficient hardware accelerators, particularly for advanced machine learning workloads.Comment: The short version is accepted by Next-Gen AI System Workshop at MLSys 202

    NullHop: A Flexible Convolutional Neural Network Accelerator Based on Sparse Representations of Feature Maps

    Get PDF
    Convolutional neural networks (CNNs) have become the dominant neural network architecture for solving many state-of-the-art (SOA) visual processing tasks. Even though Graphical Processing Units (GPUs) are most often used in training and deploying CNNs, their power efficiency is less than 10 GOp/s/W for single-frame runtime inference. We propose a flexible and efficient CNN accelerator architecture called NullHop that implements SOA CNNs useful for low-power and low-latency application scenarios. NullHop exploits the sparsity of neuron activations in CNNs to accelerate the computation and reduce memory requirements. The flexible architecture allows high utilization of available computing resources across kernel sizes ranging from 1x1 to 7x7. NullHop can process up to 128 input and 128 output feature maps per layer in a single pass. We implemented the proposed architecture on a Xilinx Zynq FPGA platform and present results showing how our implementation reduces external memory transfers and compute time in five different CNNs ranging from small ones up to the widely known large VGG16 and VGG19 CNNs. Post-synthesis simulations using Mentor Modelsim in a 28nm process with a clock frequency of 500 MHz show that the VGG19 network achieves over 450 GOp/s. By exploiting sparsity, NullHop achieves an efficiency of 368%, maintains over 98% utilization of the MAC units, and achieves a power efficiency of over 3TOp/s/W in a core area of 6.3mm2^2. As further proof of NullHop's usability, we interfaced its FPGA implementation with a neuromorphic event camera for real time interactive demonstrations
    corecore