8,552 research outputs found

    NASA Tech Briefs Index, 1977, volume 2, numbers 1-4

    Get PDF
    Announcements of new technology derived from the research and development activities of NASA are presented. Abstracts, and indexes for subject, personal author, originating center, and Tech Brief number are presented for 1977

    Design and Control of Power Converters for High Power-Quality Interface with Utility and Aviation Grids

    Get PDF
    Power electronics as a subject integrating power devices, electric and electronic circuits, control, and thermal and mechanic design, requires not only knowledge and engineering insight for each subarea, but also understanding of interface issues when incorporating these different areas into high performance converter design.Addressing these fundamental questions, the dissertation studies design and control issues in three types of power converters applied in low-frequency high-power transmission, medium-frequency converter emulated grid, and high-frequency high-density aviation grid, respectively, with the focus on discovering, understanding, and mitigating interface issues to improve power quality and converter performance, and to reduce the noise emission.For hybrid ac/dc power transmission,• Analyze the interface transformer saturation issue between ac and dc power flow under line unbalances.• Proposed both passive transformer design and active hybrid-line-impedance-conditioner to suppress this issue.For transmission line emulator,• Propose general transmission line emulation schemes with extension capability.• Analyze and actively suppress the effects of sensing/sampling bias and PWM ripple on emulation considering interfaced grid impedance.• Analyze the stability issue caused by interaction of the emulator and its interfaced impedance. A criterion that determines the stability and impedance boundary of the emulator is proposed.For aircraft battery charger,• Investigate architectures for dual-input and dual-output battery charger, and a three-level integrated topology using GaN devices is proposed to achieve high density.• Identify and analyze the mechanisms and impacts of high switching frequency, di/dt, dv/dt on sensing and power quality control; mitigate solutions are proposed.• Model and compensate the distortion due to charging transition of device junction capacitances in three-level converters.• Find the previously overlooked device junction capacitance of the nonactive devices in three-level converters, and analyze the impacts on switching loss, device stress, and current distortion. A loss calculation method is proposed using the data from the conventional double pulse tester.• Establish fundamental knowledge on performance degradation of EMI filters. The impacts and mechanisms of both inductive and capacitive coupling on different filter structures are understood. Characterization methodology including measuring, modeling, and prediction of filter insertion loss is proposed. Mitigation solutions are proposed to reduce inter-component coupling and self-parasitics

    Sensorless Rotor Position Estimation For Brushless DC Motors

    Get PDF
    Brushless DC motor speed is controlled by synchronizing the stator coil current with rotor position in order to acquire an accurate alignment of stator rotating field with rotor permanent-magnet field for efficient transfer of energy. In order to accomplish this goal, a motor shaft is instantly tracked by using rotating rotor position sensors such as Hall effect sensors, optical encoders or resolvers etc. Adding sensors to detect rotor position affects the overall reliability and mechanical robustness of the system. Therefore, a whole new trend of replacing position sensors with sensorless rotor position estimation techniques have a promising demand. Among the sensorless approaches, Back-EMF measurement and high frequency signal injection is the most common. Back-EMF is an electromotive force, directly proportional to the speed of rotor revolutions per second, the greater the speed motor acquires the greater the Back-EMF amplitude appears against the motion of rotation. However, the detected Back-EMF is zero at start-up and does not provide motor speed information at this instant. There-fore, Back-EMF based techniques are highly unfavourable for low speed application specially near zero. On the other hand, signal injection techniques are comparatively developed for low or near zero motor speed applications and they also can estimate the on-line motor parameters exploiting the identification theory on phase voltages and currents signals. The signal injection approach requires expensive additional hardware to inject high frequency signal. Since, motors are typically driven with pulse width modulation techniques, high frequency signals are naturally already present which can be used to detect position. This thesis presents rotor position estimation by measuring the voltage and current signals and also proposes an equivalent permanent-magnet synchronous motor model by fitting thedata to a position dependent circuit model

    ASDTIC control and standardized interface circuits applied to buck, parallel and buck-boost dc to dc power converters

    Get PDF
    Versatile standardized pulse modulation nondissipatively regulated control signal processing circuits were applied to three most commonly used dc to dc power converter configurations: (1) the series switching buck-regulator, (2) the pulse modulated parallel inverter, and (3) the buck-boost converter. The unique control concept and the commonality of control functions for all switching regulators have resulted in improved static and dynamic performance and control circuit standardization. New power-circuit technology was also applied to enhance reliability and to achieve optimum weight and efficiency

    High Efficiency and High Sensitivity Wireless Power Transfer and Wireless Power Harvesting Systems.

    Full text link
    In this dissertation, several approaches to improve the efficiency and sensitivity of wireless power transfer and wireless power harvesting systems, and to enhance their performance in fluctuant and unpredictable circumstances are described. Firstly, a nonlinear resonance circuit described by second-order differential equation with cubic-order nonlinearities (the Duffing equation) is developed. The Duffing nonlinear resonance circuit has significantly wider bandwidth as compared to conventional linear resonators, while achieving a similar level of amplitude. The Duffing resonator is successfully applied to the design of WPT systems to improve their tolerance to coupling factor variations stemming from changes of transmission distance and alignment of coupled coils. Subsequently, a high sensitivity wireless power harvester which collects RF energy from AM broadcast stations for powering the wireless sensors in structural health monitoring systems is introduced. The harvester demonstrates the capability of providing net RF power within 6 miles away from a local 50 kW AM station. The aforementioned Duffing resonator is also used in the design of WPH systems to improve their tolerance to frequency misalignment resulting from component aging, coupling to surrounding objects or variations of environmental conditions (temperature, humidity, etc.). At last, a rectifier array circuit with an adaptive power distribution method for wide dynamic range operation is developed. Adaptive power distribution is achieved through impedance transformation of the rectifiers’ nonlinear impedance with a passive network. The rectifier array achieves high RF-to-DC efficiency within a wide range of input power levels, and is useful in both WPT and WPH applications where levels of the RF power collected by the receiver are subject to unpredictable fluctuations.PhDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/133338/1/tinyfish_1.pd

    Index to NASA Tech Briefs, 1975

    Get PDF
    This index contains abstracts and four indexes--subject, personal author, originating Center, and Tech Brief number--for 1975 Tech Briefs

    Magnetocardiography in unshielded environment based on optical magnetometry and adaptive noise cancellation

    Get PDF
    This thesis proposes and demonstrates the concept of a magnetocardiographic system employing an array of optically-pumped quantum magnetometers and an adaptive noise cancellation for heart magnetic field measurement within a magnetically-unshielded environment. Optically-pumped quantum magnetometers are based on the use of the atomic-spin-dependent optical properties of an atomic medium. An Mxconfiguration- based optically-pumped quantum magnetometer employing two sensing cells containing caesium vapour is theoretically described and experimentally developed, and the dependence of its sensitivity and frequency bandwidth upon the light power and the alkali vapour temperature is experimentally demonstrated. Furthermore, the capability of the developed magnetometer of measuring very weak magnetic fields is experimentally demonstrated in a magnetically-unshielded environment. The adaptive noise canceller is based on standard Least-Mean-Squares (LMS) algorithms and on two heuristic optimization techniques, namely, Genetic Algorithms (GA) and Particle Swarm Optimization (PSO). The use of these algorithms is investigated for suppressing the power line generated 50Hz interference and recovering of the weak magnetic heart signals from a much higher electromagnetic environmental noise. Experimental results show that all the algorithms can extract a weak heart signal from a much-stronger magnetic noise, detect the P, QRS, and T heart features and highly suppress the common power line noise component at 50 Hz. Moreover, adaptive noise cancellation based on heuristic algorithms is shown to be more efficient than adaptive noise canceller based on standard or normalised LMS algorithm in heart features detection

    Broadband electric field sensing and its application to material characterisation and nuclear quadrupole resonance

    Get PDF
    The aim of this project is to address the challenges associated with extending the radio frequency capability of Electric Potential Sensors to greater than 10 MHz. This has culminated in a single broadband sensor, with a frequency range of 200 Hz to greater than 200 MHz. The use of Electric Potential Sensors for the measurement of electric field with minimal perturbation has already been demonstrated at Sussex. These high impedance sensors have been successfully employed in measuring signals with frequencies in the range 1 mHz to 2 MHz. Many different versions of these sensors have been produced to cater for specific measurement requirements in a wide variety of experimental situations. From the point of view of this project, the relevant prior work is the acquisition of a 2 MHz electric field nuclear magnetic resonance signal, and the non-destructive testing of composite materials at audio frequency. Two very distinct electric field measurement scenarios are described which illustrate the diverse capabilities of the broadband sensor. Firstly, an electric field readout system for nuclear quadrupole resonance is demonstrated for the first time, with a sodium chlorate sample at a frequency of 30 MHz. Nuclear quadrupole resonance is an important technique with applications in the detection of explosives and narcotics. Unlike nuclear magnetic resonance a large magnet is not required, opening up the possibility of portable equipment. The electric field readout system is shown to be simpler than the conventional magnetic readout and may therefore contribute to the development of portable devices. Secondly, a broadband, high spatial resolution microscope system for materials characterisation with four different imaging modes is described. This includes; the surface topography of a conducting sample; the dielectric constant variation in glass/epoxy composite; the conductivity variation in a carbon fibre composite; and the electrode pixels inside a solid state CMOS fingerprint sensor

    Publications of the Jet Propulsion Laboratory 1989

    Get PDF
    This bibliography describes and indexes by primary author the externally distributed technical reporting, released during 1989, that resulted from scientific and engineering work performed, or managed, by JPL. Three classes of publications are included: JPL publications in which the information is complete for a specific accomplishment; articles from the quarterly Telecommunications and Data Acquisition (TDA) Progress Report; and articles published in the open literature
    corecore