111 research outputs found

    Advances in Solid State Circuit Technologies

    Get PDF
    This book brings together contributions from experts in the fields to describe the current status of important topics in solid-state circuit technologies. It consists of 20 chapters which are grouped under the following categories: general information, circuits and devices, materials, and characterization techniques. These chapters have been written by renowned experts in the respective fields making this book valuable to the integrated circuits and materials science communities. It is intended for a diverse readership including electrical engineers and material scientists in the industry and academic institutions. Readers will be able to familiarize themselves with the latest technologies in the various fields

    Optical Switching for Scalable Data Centre Networks

    Get PDF
    This thesis explores the use of wavelength tuneable transmitters and control systems within the context of scalable, optically switched data centre networks. Modern data centres require innovative networking solutions to meet their growing power, bandwidth, and scalability requirements. Wavelength routed optical burst switching (WROBS) can meet these demands by applying agile wavelength tuneable transmitters at the edge of a passive network fabric. Through experimental investigation of an example WROBS network, the transmitter is shown to determine system performance, and must support ultra-fast switching as well as power efficient transmission. This thesis describes an intelligent optical transmitter capable of wideband sub-nanosecond wavelength switching and low-loss modulation. A regression optimiser is introduced that applies frequency-domain feedback to automatically enable fast tuneable laser reconfiguration. Through simulation and experiment, the optimised laser is shown to support 122×50 GHz channels, switching in less than 10 ns. The laser is deployed as a component within a new wavelength tuneable source (WTS) composed of two time-interleaved tuneable lasers and two semiconductor optical amplifiers. Switching over 6.05 THz is demonstrated, with stable switch times of 547 ps, a record result. The WTS scales well in terms of chip-space and bandwidth, constituting the first demonstration of scalable, sub-nanosecond optical switching. The power efficiency of the intelligent optical transmitter is further improved by introduction of a novel low-loss split-carrier modulator. The design is evaluated using 112 Gb/s/λ intensity modulated, direct-detection signals and a single-ended photodiode receiver. The split-carrier transmitter is shown to achieve hard decision forward error correction ready performance after 2 km of transmission using a laser output power of just 0 dBm; a 5.2 dB improvement over the conventional transmitter. The results achieved in the course of this research allow for ultra-fast, wideband, intelligent optical transmitters that can be applied in the design of all-optical data centres for power efficient, scalable networking

    Direct Time of Flight Single Photon Imaging

    Get PDF

    Second IEEE/LEOS Benelux Chapter, November 26th, 1997, Eindhoven University of Technology, The Netherlands

    Get PDF

    Second IEEE/LEOS Benelux Chapter, November 26th, 1997, Eindhoven University of Technology, The Netherlands

    Get PDF

    Smart cmos image sensor for 3d measurement

    Get PDF
    3D measurements are concerned with extracting visual information from the geometry of visible surfaces and interpreting the 3D coordinate data thus obtained, to detect or track the position or reconstruct the profile of an object, often in real time. These systems necessitate image sensors with high accuracy of position estimation and high frame rate of data processing for handling large volumes of data. A standard imager cannot address the requirements of fast image acquisition and processing, which are the two figures of merit for 3D measurements. Hence, dedicated VLSI imager architectures are indispensable for designing these high performance sensors. CMOS imaging technology provides potential to integrate image processing algorithms on the focal plane of the device, resulting in smart image sensors, capable of achieving better processing features in handling massive image data. The objective of this thesis is to present a new architecture of smart CMOS image sensor for real time 3D measurement using the sheet-beam projection methods based on active triangulation. Proposing the vision sensor as an ensemble of linear sensor arrays, all working in parallel and processing the entire image in slices, the complexity of the image-processing task shifts from O (N 2 ) to O (N). Inherent also in the design is the high level of parallelism to achieve massive parallel processing at high frame rate, required in 3D computation problems. This work demonstrates a prototype of the smart linear sensor incorporating full testability features to test and debug both at device and system levels. The salient features of this work are the asynchronous position to pulse stream conversion, multiple images binarization, high parallelism and modular architecture resulting in frame rate and sub-pixel resolution suitable for real time 3D measurements

    2022 roadmap on neuromorphic computing and engineering

    Full text link
    Modern computation based on von Neumann architecture is now a mature cutting-edge science. In the von Neumann architecture, processing and memory units are implemented as separate blocks interchanging data intensively and continuously. This data transfer is responsible for a large part of the power consumption. The next generation computer technology is expected to solve problems at the exascale with 1018^{18} calculations each second. Even though these future computers will be incredibly powerful, if they are based on von Neumann type architectures, they will consume between 20 and 30 megawatts of power and will not have intrinsic physically built-in capabilities to learn or deal with complex data as our brain does. These needs can be addressed by neuromorphic computing systems which are inspired by the biological concepts of the human brain. This new generation of computers has the potential to be used for the storage and processing of large amounts of digital information with much lower power consumption than conventional processors. Among their potential future applications, an important niche is moving the control from data centers to edge devices. The aim of this roadmap is to present a snapshot of the present state of neuromorphic technology and provide an opinion on the challenges and opportunities that the future holds in the major areas of neuromorphic technology, namely materials, devices, neuromorphic circuits, neuromorphic algorithms, applications, and ethics. The roadmap is a collection of perspectives where leading researchers in the neuromorphic community provide their own view about the current state and the future challenges for each research area. We hope that this roadmap will be a useful resource by providing a concise yet comprehensive introduction to readers outside this field, for those who are just entering the field, as well as providing future perspectives for those who are well established in the neuromorphic computing community

    FPGA design and implementation of a framework for optogenetic retinal prosthesis

    Get PDF
    PhD ThesisThere are 285 million people worldwide with a visual impairment, 39 million of whom are completely blind and 246 million partially blind, known as low vision patients. In the UK and other developed countries of the west, retinal dystrophy diseases represent the primary cause of blindness, especially Age Related Macular Degeneration (AMD), diabetic retinopathy and Retinitis Pigmentosa (RP). There are various treatments and aids that can help these visual disorders, such as low vision aids, gene therapy and retinal prosthesis. Retinal prostheses consist of four main stages: the input stage (Image Acquisition), the high level processing stage (Image preparation and retinal encoding), low level processing stage (Stimulation controller) and the output stage (Image displaying on the opto-electronic micro-LEDs array). Up to now, a limited number of full hardware implementations have been available for retinal prosthesis. In this work, a photonic stimulation controller was designed and implemented. The main rule of this controller is to enhance framework results in terms of power and time. It involves, first, an even power distributor, which was used to evenly distribute the power through image sub-frames, to avoid a large surge of power, especially with large arrays. Therefore, the overall framework power results are improved. Second, a pulse encoder was used to select different modes of operation for the opto-electronic micro-LEDs array, and as a result of this the overall time for the framework was improved. The implementation is completed using reconfigurable hardware devices, i.e. Field Programmable Gate Arrays (FPGAs), to achieve high performance at an economical price. Moreover, this FPGA-based framework for an optogenetic retinal prosthesis aims to control the opto-electronic micro-LED array in an efficient way, and to interface and link between the opto-electronic micro-LED array hardware architecture and the previously developed high level retinal prosthesis image processing algorithms.University of Jorda

    Towards Integrated Fluorescence Sensing

    Get PDF
    This thesis is an account of ongoing efforts in the Integrated Biomorphic Information Systems Laboratory and the Laboratory for MicroTechnologies towards the implementation of integrated microfabricated biosensing platforms with on-chip fluorescence detection capability. The first chapter is a published, exhaustive, and critical review of state-of-the-art microfluorometers, and it offers a set of performance metrics for evaluating sensors of different architectures. The second chapter consists of material from two journal papers, currently in preparation, in which the development of a polymeric optical filter material for UV fluorescence spectroscopy is presented and its integration with a CMOS active pixel sensor (APS) discussed. The third chapter, which is also an archival publication, presents initial efforts towards achieving high-sensitivity CMOS photodetectors for photon counting-based fluorescence assays in integrated platforms
    corecore