1,063 research outputs found

    A traffic classification method using machine learning algorithm

    Get PDF
    Applying concepts of attack investigation in IT industry, this idea has been developed to design a Traffic Classification Method using Data Mining techniques at the intersection of Machine Learning Algorithm, Which will classify the normal and malicious traffic. This classification will help to learn about the unknown attacks faced by IT industry. The notion of traffic classification is not a new concept; plenty of work has been done to classify the network traffic for heterogeneous application nowadays. Existing techniques such as (payload based, port based and statistical based) have their own pros and cons which will be discussed in this literature later, but classification using Machine Learning techniques is still an open field to explore and has provided very promising results up till now

    A Threat to Cyber Resilience : A Malware Rebirthing Botnet

    Get PDF
    This paper presents a threat to cyber resilience in the form of a conceptual model of a malware rebirthing botnet which can be used in a variety of scenarios. It can be used to collect existing malware and rebirth it with new functionality and signatures that will avoid detection by AV software and hinder analysis. The botnet can then use the customized malware to target an organization with an orchestrated attack from the member machines in the botnet for a variety of malicious purposes, including information warfare applications. Alternatively, it can also be used to inject known malware signatures into otherwise non malicious code and traffic to overloading the sensors and processing systems employed by intrusion detection and prevention systems to create a denial of confidence of the sensors and detection systems. This could be used as a force multiplier in asymmetric warfare applications to create confusion and distraction whilst attacks are made on other defensive fronts

    Spatiotemporal Patterns and Predictability of Cyberattacks

    Get PDF
    Y.C.L. was supported by Air Force Office of Scientific Research (AFOSR) under grant no. FA9550-10-1-0083 and Army Research Office (ARO) under grant no. W911NF-14-1-0504. S.X. was supported by Army Research Office (ARO) under grant no. W911NF-13-1-0141. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD

    Predication Attacks Based on Intelligent Honeypot Technique

    Get PDF
    Honeypot combined with machine learning techniques is offered as a model for intrusion detection presented in the current research. Recent years have seen an uptick in the number of security initiatives implemented by every type of business. This requires anticipatory analysis of a potential attack in order to achieve the desired result. Honeypots are one of the instruments used to observe malicious actors in action. A honeypot is a type of network system used to detect intrusions into computer networks by observing and analysing the actions of potential intruders in a controlled, but vulnerable, setting. Improved outcomes in terms of true positives and false positives were also presented thanks to the use of the Decision Tree (DT). Both the overall accuracy in detecting attacks and the false alarm rate are enhanced by the suggested model-based honeypot and machine learning

    Spatiotemporal patterns and predictability of cyberattacks

    Full text link
    A relatively unexplored issue in cybersecurity science and engineering is whether there exist intrinsic patterns of cyberattacks. Conventional wisdom favors absence of such patterns due to the overwhelming complexity of the modern cyberspace. Surprisingly, through a detailed analysis of an extensive data set that records the time-dependent frequencies of attacks over a relatively wide range of consecutive IP addresses, we successfully uncover intrinsic spatiotemporal patterns underlying cyberattacks, where the term "spatio" refers to the IP address space. In particular, we focus on analyzing {\em macroscopic} properties of the attack traffic flows and identify two main patterns with distinct spatiotemporal characteristics: deterministic and stochastic. Strikingly, there are very few sets of major attackers committing almost all the attacks, since their attack "fingerprints" and target selection scheme can be unequivocally identified according to the very limited number of unique spatiotemporal characteristics, each of which only exists on a consecutive IP region and differs significantly from the others. We utilize a number of quantitative measures, including the flux-fluctuation law, the Markov state transition probability matrix, and predictability measures, to characterize the attack patterns in a comprehensive manner. A general finding is that the attack patterns possess high degrees of predictability, potentially paving the way to anticipating and, consequently, mitigating or even preventing large-scale cyberattacks using macroscopic approaches
    • …
    corecore