4,746 research outputs found

    Predict the Future from the Past? On the Temporal Data Distribution Shift in Financial Sentiment Classifications

    Full text link
    Temporal data distribution shift is prevalent in the financial text. How can a financial sentiment analysis system be trained in a volatile market environment that can accurately infer sentiment and be robust to temporal data distribution shifts? In this paper, we conduct an empirical study on the financial sentiment analysis system under temporal data distribution shifts using a real-world financial social media dataset that spans three years. We find that the fine-tuned models suffer from general performance degradation in the presence of temporal distribution shifts. Furthermore, motivated by the unique temporal nature of the financial text, we propose a novel method that combines out-of-distribution detection with time series modeling for temporal financial sentiment analysis. Experimental results show that the proposed method enhances the model's capability to adapt to evolving temporal shifts in a volatile financial market.Comment: EMNLP 2023 main conferenc

    Reducing Spurious Correlations for Aspect-Based Sentiment Analysis with Variational Information Bottleneck and Contrastive Learning

    Full text link
    Deep learning techniques have dominated the literature on aspect-based sentiment analysis (ABSA), yielding state-of-the-art results. However, these deep models generally suffer from spurious correlation problems between input features and output labels, which creates significant barriers to robustness and generalization capability. In this paper, we propose a novel Contrastive Variational Information Bottleneck framework (called CVIB) to reduce spurious correlations for ABSA. The proposed CVIB framework is composed of an original network and a self-pruned network, and these two networks are optimized simultaneously via contrastive learning. Concretely, we employ the Variational Information Bottleneck (VIB) principle to learn an informative and compressed network (self-pruned network) from the original network, which discards the superfluous patterns or spurious correlations between input features and prediction labels. Then, self-pruning contrastive learning is devised to pull together semantically similar positive pairs and push away dissimilar pairs, where the representations of the anchor learned by the original and self-pruned networks respectively are regarded as a positive pair while the representations of two different sentences within a mini-batch are treated as a negative pair. To verify the effectiveness of our CVIB method, we conduct extensive experiments on five benchmark ABSA datasets and the experimental results show that our approach achieves better performance than the strong competitors in terms of overall prediction performance, robustness, and generalization

    Distributionally Robust Optimization with Probabilistic Group

    Full text link
    Modern machine learning models may be susceptible to learning spurious correlations that hold on average but not for the atypical group of samples. To address the problem, previous approaches minimize the empirical worst-group risk. Despite the promise, they often assume that each sample belongs to one and only one group, which does not allow expressing the uncertainty in group labeling. In this paper, we propose a novel framework PG-DRO, which explores the idea of probabilistic group membership for distributionally robust optimization. Key to our framework, we consider soft group membership instead of hard group annotations. The group probabilities can be flexibly generated using either supervised learning or zero-shot approaches. Our framework accommodates samples with group membership ambiguity, offering stronger flexibility and generality than the prior art. We comprehensively evaluate PG-DRO on both image classification and natural language processing benchmarks, establishing superior performanceComment: Published at AAAI 202

    Looking at the Overlooked: An Analysis on the Word-Overlap Bias in Natural Language Inference

    Get PDF
    It has been shown that NLI models are usually biased with respect to the word-overlap between premise and hypothesis; they take this feature as a primary cue for predicting the entailment label. In this paper, we focus on an overlooked aspect of the overlap bias in NLI models: the reverse word-overlap bias. Our experimental results demonstrate that current NLI models are highly biased towards the non-entailment label on instances with low overlap, and the existing debiasing methods, which are reportedly successful on existing challenge datasets, are generally ineffective in addressing this category of bias. We investigate the reasons for the emergence of the overlap bias and the role of minority examples in its mitigation. For the former, we find that the word-overlap bias does not stem from pre-training, and for the latter, we observe that in contrast to the accepted assumption, eliminating minority examples does not affect the generalizability of debiasing methods with respect to the overlap bias.Comment: Accepted at EMNLP 202

    Learning Stable Classifiers by Transferring Unstable Features

    Full text link
    While unbiased machine learning models are essential for many applications, bias is a human-defined concept that can vary across tasks. Given only input-label pairs, algorithms may lack sufficient information to distinguish stable (causal) features from unstable (spurious) features. However, related tasks often share similar biases -- an observation we may leverage to develop stable classifiers in the transfer setting. In this work, we explicitly inform the target classifier about unstable features in the source tasks. Specifically, we derive a representation that encodes the unstable features by contrasting different data environments in the source task. We achieve robustness by clustering data of the target task according to this representation and minimizing the worst-case risk across these clusters. We evaluate our method on both text and image classifications. Empirical results demonstrate that our algorithm is able to maintain robustness on the target task, outperforming the best baseline by 22.9% in absolute accuracy across 12 transfer settings. Our code is available at https://github.com/YujiaBao/Tofu

    Confounder Balancing in Adversarial Domain Adaptation for Pre-Trained Large Models Fine-Tuning

    Full text link
    The excellent generalization, contextual learning, and emergence abilities in the pre-trained large models (PLMs) handle specific tasks without direct training data, making them the better foundation models in the adversarial domain adaptation (ADA) methods to transfer knowledge learned from the source domain to target domains. However, existing ADA methods fail to account for the confounder properly, which is the root cause of the source data distribution that differs from the target domains. This study proposes an adversarial domain adaptation with confounder balancing for PLMs fine-tuning (ADA-CBF). The ADA-CBF includes a PLM as the foundation model for a feature extractor, a domain classifier and a confounder classifier, and they are jointly trained with an adversarial loss. This loss is designed to improve the domain-invariant representation learning by diluting the discrimination in the domain classifier. At the same time, the adversarial loss also balances the confounder distribution among source and unmeasured domains in training. Compared to existing ADA methods, ADA-CBF can correctly identify confounders in domain-invariant features, thereby eliminating the confounder biases in the extracted features from PLMs. The confounder classifier in ADA-CBF is designed as a plug-and-play and can be applied in the confounder measurable, unmeasurable, or partially measurable environments. Empirical results on natural language processing and computer vision downstream tasks show that ADA-CBF outperforms the newest GPT-4, LLaMA2, ViT and ADA methods

    Knowledge is Power: Understanding Causality Makes Legal judgment Prediction Models More Generalizable and Robust

    Full text link
    Legal judgment Prediction (LJP), aiming to predict a judgment based on fact descriptions, serves as legal assistance to mitigate the great work burden of limited legal practitioners. Most existing methods apply various large-scale pre-trained language models (PLMs) finetuned in LJP tasks to obtain consistent improvements. However, we discover the fact that the state-of-the-art (SOTA) model makes judgment predictions according to wrong (or non-casual) information, which not only weakens the model's generalization capability but also results in severe social problems like discrimination. Here, we analyze the causal mechanism misleading the LJP model to learn the spurious correlations, and then propose a framework to guide the model to learn the underlying causality knowledge in the legal texts. Specifically, we first perform open information extraction (OIE) to refine the text having a high proportion of causal information, according to which we generate a new set of data. Then, we design a model learning the weights of the refined data and the raw data for LJP model training. The extensive experimental results show that our model is more generalizable and robust than the baselines and achieves a new SOTA performance on two commonly used legal-specific datasets
    • …
    corecore