12,957 research outputs found

    On numerical methods for highly oscillatory problems in circuit simulation

    Get PDF
    We propose in this paper a novel technique for an efficient numerical approximation of systems of highly oscillatory ordinary differential equations. In particular, we consider electronic systems subject to modulated signals. A Filon-type method is proposed for use and compared with traditional trapezoidal rule and Rungeā€“Kutta methods. The Filontype method is combined with the waveform relaxation technique for nonlinear systems. Preliminary numerical examples highlight the efficacy of this approach

    Efficient computation of delay differential equations with highly oscillatory terms.

    Get PDF
    This paper is concerned with the asymptotic expansion and numerical solution of systems of linear delay differential equations with highly oscillatory forcing terms. The computation of such problems using standard numerical methods is exceedingly slow and inefficient, indeed standard software is practically useless for this purpose. We propose an alternative, consisting of an asymptotic expansion of the solution, where each term can be derived either by recursion or by solving a non-oscillatory problem. This leads to methods which, counter-intuitively to those developed according to standard numerical reasoning, exhibit improved performance with growing frequency of oscillation

    A new simulation technique for RF oscillators

    Get PDF
    The study of phase-noise in oscillators and the design of new circuit topologies necessitates an efficient technique for the simulation of oscillators. While numerous approaches have been developed over the years e.g. [1-3], each has its own merits and demerits. In this contribution, an asymptotic numeric method developed in e.g. [4-5] is applied to the simulation of RF oscillators. The method is closely related to the stroboscopic and high-order averaging method in [6] and the Heterogeneous Multiscale Methods in [7]. The method is advantageous in that the same methodology can be applied for the simulation of general circuit problems involving highly oscillatory ordinary differential equations, partial differential equations and delay differential equations. Furthermore and counter-intuitively, its efficacy improves with increasing frequency, a feature that is very favourable in modern communications systems where operating frequencies are ever rising. Results for a CMOS oscillator will confirm the validity and efficiency of the proposed method

    Numerical integrators for motion under a strong constraining force

    Full text link
    This paper deals with the numerical integration of Hamiltonian systems in which a stiff anharmonic potential causes highly oscillatory solution behavior with solution-dependent frequencies. The impulse method, which uses micro- and macro-steps for the integration of fast and slow parts, respectively, does not work satisfactorily on such problems. Here it is shown that variants of the impulse method with suitable projection preserve the actions as adiabatic invariants and yield accurate approximations, with macro-stepsizes that are not restricted by the stiffness parameter
    • ā€¦
    corecore