1,163 research outputs found

    Fully Dynamic Maximum Independent Sets of Disks in Polylogarithmic Update Time

    Full text link
    A fundamental question in computational geometry is for a dynamic collection of geometric objects in Euclidean space, whether it is possible to maintain a maximum independent set in polylogarithmic update time. Already, for a set of intervals, it is known that no dynamic algorithm can maintain an exact maximum independent set with sublinear update time. Therefore, the typical objective is to explore the trade-off between update time and solution size. Substantial efforts have been made in recent years to understand this question for various families of geometric objects, such as intervals, hypercubes, hyperrectangles, and fat objects. We present the first fully dynamic approximation algorithm for disks of arbitrary radii in the plane that maintains a constant-factor approximate maximum independent set in polylogarithmic update time. First, we show that for a fully dynamic set of nn unit disks in the plane, a 1212-approximate maximum independent set can be maintained with worst-case update time O(log2n)O(\log^2 n), and optimal output-sensitive reporting. Moreover, this result generalizes to fat objects of comparable sizes in any fixed dimension dd, where the approximation ratio depends on the dimension and the fatness parameter. Our main result is that for a fully dynamic set of disks of arbitrary radii in the plane, an O(1)O(1)-approximate maximum independent set can be maintained in polylogarithmic expected amortized update time.Comment: Abstract is shortened to meet Arxiv's requirement on the number of character

    A Bicriteria Approximation for the Reordering Buffer Problem

    Full text link
    In the reordering buffer problem (RBP), a server is asked to process a sequence of requests lying in a metric space. To process a request the server must move to the corresponding point in the metric. The requests can be processed slightly out of order; in particular, the server has a buffer of capacity k which can store up to k requests as it reads in the sequence. The goal is to reorder the requests in such a manner that the buffer constraint is satisfied and the total travel cost of the server is minimized. The RBP arises in many applications that require scheduling with a limited buffer capacity, such as scheduling a disk arm in storage systems, switching colors in paint shops of a car manufacturing plant, and rendering 3D images in computer graphics. We study the offline version of RBP and develop bicriteria approximations. When the underlying metric is a tree, we obtain a solution of cost no more than 9OPT using a buffer of capacity 4k + 1 where OPT is the cost of an optimal solution with buffer capacity k. Constant factor approximations were known previously only for the uniform metric (Avigdor-Elgrabli et al., 2012). Via randomized tree embeddings, this implies an O(log n) approximation to cost and O(1) approximation to buffer size for general metrics. Previously the best known algorithm for arbitrary metrics by Englert et al. (2007) provided an O(log^2 k log n) approximation without violating the buffer constraint.Comment: 13 page

    Minimum Cuts in Geometric Intersection Graphs

    Full text link
    Let D\mathcal{D} be a set of nn disks in the plane. The disk graph GDG_\mathcal{D} for D\mathcal{D} is the undirected graph with vertex set D\mathcal{D} in which two disks are joined by an edge if and only if they intersect. The directed transmission graph GDG^{\rightarrow}_\mathcal{D} for D\mathcal{D} is the directed graph with vertex set D\mathcal{D} in which there is an edge from a disk D1DD_1 \in \mathcal{D} to a disk D2DD_2 \in \mathcal{D} if and only if D1D_1 contains the center of D2D_2. Given D\mathcal{D} and two non-intersecting disks s,tDs, t \in \mathcal{D}, we show that a minimum ss-tt vertex cut in GDG_\mathcal{D} or in GDG^{\rightarrow}_\mathcal{D} can be found in O(n3/2polylogn)O(n^{3/2}\text{polylog} n) expected time. To obtain our result, we combine an algorithm for the maximum flow problem in general graphs with dynamic geometric data structures to manipulate the disks. As an application, we consider the barrier resilience problem in a rectangular domain. In this problem, we have a vertical strip SS bounded by two vertical lines, LL_\ell and LrL_r, and a collection D\mathcal{D} of disks. Let aa be a point in SS above all disks of D\mathcal{D}, and let bb a point in SS below all disks of D\mathcal{D}. The task is to find a curve from aa to bb that lies in SS and that intersects as few disks of D\mathcal{D} as possible. Using our improved algorithm for minimum cuts in disk graphs, we can solve the barrier resilience problem in O(n3/2polylogn)O(n^{3/2}\text{polylog} n) expected time.Comment: 11 pages, 4 figure

    Parallelization of cycle-based logic simulation

    Get PDF
    Verification of digital circuits by Cycle-based simulation can be performed in parallel. The parallel implementation requires two phases: the compilation phase, that sets up the data needed for the execution of the simulation, and the simulation phase, that consists in executing the parallel simulation of the considered circuit for a certain number of cycles. During the early phase of design, compilation phase has to be repeated each time a bug is found. Thus, if the time of the compilation phase is too high, the advantages stemming from the parallel approach may be lost. In this work we propose an effective version of the compilation phase and compute the corresponding execution time. We also analyze the percentage of execution time required by the different steps of the compilation phase for a set of literature benchmarks. Further, we implemented the simulation phase exploiting the GPU architecture, and we computed the execution times for a set of benchmarks obtaining values comparable with literature ones. Finally, we implemented the sequential version of the Cycle-based simulation in such a way that the execution time is optimized. We used the sequential values to compute the speedup of the parallel version for the considered set of benchmarks

    Parallel and Distributed Data Series Processing on Modern and Emerging Hardware

    Full text link
    This paper summarizes state-of-the-art results on data series processing with the emphasis on parallel and distributed data series indexes that exploit the computational power of modern computing platforms. The paper comprises a summary of the tutorial the author delivered at the 15th International Conference on Management of Digital EcoSystems (MEDES'23).Comment: This paper will appear in the Proceedings of the 15th International Conference on Management of Digital EcoSystems (MEDES'23
    corecore