1,668 research outputs found
Optical properties of refractory metal based thin films
There is a growing interest in refractory metal thin films for a range of emerging nanophotonic applications including high temperature plasmonic structures and infrared superconducting single photon detectors. We present a detailed comparison of optical properties for key representative materials in this class (NbN, NbTiN, TiN and MoSi) with texture varying from crystalline to amorphous. NbN, NbTiN and MoSi have been grown in an ultra-high vacuum sputter deposition system. Two different techniques (sputtering and atomic layer deposition) have been employed to deposit TiN. We have carried out variable angle ellipsometric measurements of optical properties from ultraviolet to mid infrared wavelengths. We compare with high resolution transmission electron microscopy analysis of microstructure. Sputter deposited TiN and MoSi have shown the highest optical absorption in the infrared wavelengths relative to NbN, NbTiN or ALD deposited TiN. We have also modelled the performance of a semi-infinite metal air interface as a plasmonic structure with the above mentioned refractory metal based thin films as the plasmonic components. This study has implications in the design of next generation superconducting nanowire single photon detector or plasmonic nanostructure based devices
A method of producing high quality oxide and related films on surfaces
Aluminum oxide or aluminum nitride films were deposited on molecular beam epitaxy (MBE) grown GaAS(100) using a novel cryogenic-based reactive thin film deposition technique. The process involves the condensation of molecular oxygen, ammonia, or other gases normally used for reactive thin film deposition on the substrate before the metal is deposited. The metal vapor is deposited into this layer and reacts with the molecular solid to form the desired compound or a precursor that can be thermally decomposed to generate the desired compound. The films produced by this method are free of impurities, and the low temperatures can be used to control the film and interfacial structure. The process can be easily integrated with existing MBE systems. Ongoing research using the same apparatus suggests that photon or electron irradiation could be used to promote the reactions needed to produce the intended material
Investigation of superconducting interactions and amorphous semiconductors
Research papers on superconducting interactions and properties and on amorphous materials are presented. The search for new superconductors with improved properties was largely concentrated on the study of properties of thin films. An experimental investigation of interaction mechanisms revealed no new superconductivity mechanism. The properties of high transition temperature, type 2 materials prepared in thin film form were studied. A pulsed field solenoid capable of providing fields in excess of 300 k0e was developed. Preliminary X-ray measurements were made of V3Si to determine the behavior of cell constant deformation versus pressure up to 98 kilobars. The electrical properties of amorphous semiconducting materials and bulk and thin film devices, and of amorphous magnetic materials were investigated for developing radiation hard, inexpensive switches and memory elements
Properties of MoNxOy thin films as a function of N/O ratio
The main purpose of this work consists on the preparation of single layered molybdenum oxynitride, MoNxOy. The films were deposited on steel substrates by dc reactive magnetron sputtering. The depositions were carried out from a pure Mo target varying the flow rate of reactive gases, which allowed tune the crystallographic structure between insulating oxides and metallic nitrides and consequently electronic, mechanical and optical properties of the material. X-ray diffraction (XRD) results revealed the occurrence of molybdenum nitride for the films with low oxygen fraction: face-centred cubic phases (gama-Mo2N) for low nitrogen flow rate or cubic MoNx and hexagonal phase (delta-MoN) for high nitrogen flow rate. The increase of oxygen content induces an amorphization of the nitride phases and appearance of MoO3 phases. The increase of the oxygen fraction in the films induces also a high decrease in films hardness. Residual stresses revealed to be of compressive type, in the range of very few tenths of GPa to 2 GPa. All these results have been analysed and will be presented as a function of the deposition parameters, the chemical composition and the structure of the films.Fundação para a Ciência e a Tecnologia (FCT) – Pograma Operacional “Ciência, Tecnologia, Inovação” - POCTI/CTM/38086/2001.Comunidade Europeia (CE). Fundo Europeu de Desenvolvimento Regional (FEDER)
Atomic Layer Deposition of Metal and Transition Metal Nitride Thin Films and In Situ Mass Spectrometry Studies
Stable metallization for diamond and other materials
An adherent and metallurgically stable metallization system for diamond is presented. The big improvement in metallurgical stability is attributed to the use of a ternary, amorphous Ti--Si--N diffusion barrier. No diffusion between the layers and no delamination of the metallization was observed after annealing the schemes at 400.degree. C. for 100 hours and at 900.degree. C. for 30 minutes. Thermal cycling experiments in air from -65 to 155.degree. C. and adhesion tests were performed. Various embodiments are disclosed
CrCuAgN PVD nanocomposite coatings: Effects of annealing on coating morphology and nanostructure
CrCuAgN PVD nanocomposite coatings were produced using pulsed DC unbalanced magnetron sputtering. This investigation focuses on the effects of post-coat annealing on the surface morphology, phase composition and nanostructure of such coatings. In coatings with nitrogen contents up to 16 at.%, chromium exists as metallic Cr with N in supersaturated solid solution, even after 300 °C and 500 °C post-coat annealing. Annealing at 300 °C did not obviously change the phase composition of both nitrogen-free and nitrogen-containing coatings; however, 500 °C annealing resulted in significant transformation of the nitrogen-containing coatings. The formation of Ag aggregates relates to the (Cu + Ag)/Cr atomic ratio (threshold around 0.2), whereas the formation of Cu aggregates relates to the (Cu + Ag + N)/Cr atomic ratio (threshold around 0.5). The primary annealing-induced changes were reduced solubility of Cu, Ag and N in Cr, and the composition altering from a mixed ultra-fine nanocrystalline and partly amorphous phase constitution to a coarser, but still largely nanocrystalline structure. It was also found that, with sufficient Cu content (>12 at.%), annealing at a moderately high temperature (e.g. 500 °C) leads to transportation of both Cu and Ag (even at relatively low concentrations of Ag, ≤3 at.%) from inside the coating to the coating surface, which resulted in significant reductions in friction coefficient, by over 50% compared to that of the substrate (from 0.31 to 0.14 with a hemispherical diamond indenter, and from 0.83 to 0.40 with an alumina ball counterface, respectively). Results indicate that the addition of both Cu and Ag (in appropriate concentrations) to nitrogen-containing chromium is a viable strategy for the development of ‘self-replenishing’ silver-containing thin film architectures for temperature-dependent solid lubrication requirements or antimicrobial coating applications
Solid lubricant behavior of MoS2 and WSe2-based nanocomposite coatings
Tribological coatings made of MoS2 and WSe2 phases and their corresponding combinations with tungsten carbide (WC) were prepared by non-reactive magnetron sputtering of individual targets of similar composition. A comparative tribological analysis of these multiphase coatings was done in both ambient air (30–40% relative humidity, RH) and dry nitrogen (RH<7%) environments using the same tribometer and testing conditions. A nanostructural study using advanced transmission electron microscopy of the initial coatings and examination of the counterfaces after the friction test using different analytical tools helped to elucidate what governs the tribological behavior for each type of environment. This allowed conclusions to be made about the influence of the coating microstructure and composition on the tribological response. The best performance obtained with a WSex film (specific wear rate of 2 × 10−8 mm3 N–1m–1 and a friction coefficient of 0.03–0.05) was compared with that of the well-established MoS2 lubricant material.The Spanish Ministry of Economy, Industry and Competitiveness [projects n° MAT2010-21597-C02-01, MAT2011-29074-C02-01; MAT2015-65539-P; MAT2015-69035-REDC], Junta de Andalucía [P10-TEP-67182] and Spanish National Research Council (CSIC) [201560E013] are acknowledged for their financial support
Beam lead technology
Beam lead technology for microcircuit interconnections with applications to metallization, passivation, and bondin
Phase composition and transformations in magnetron-sputtered (Al,V)2O3 coatings
Coatings of (Al1-xVx)2O3, with x ranging from 0 to 1, were deposited by
pulsed DC reactive sputter deposition on Si(100) at a temperature of 550
{\deg}C. XRD showed three different crystal structures depending on V-metal
fraction in the coating: {\alpha}-V2O3 rhombohedral structure for 100 at.% V, a
defect spinel structure for the intermediate region, 63 - 42 at.% V. At lower
V-content, 18 and 7 at.%, a gamma-alumina-like solid solution was observed,
shifted to larger d-spacing compared to pure {\gamma}-Al2O3. The microstructure
changes from large columnar faceted grains for {\alpha}-V2O3 to smaller
equiaxed grains when lowering the vanadium content toward pure {\gamma}-Al2O3.
Annealing in air resulted in formation of V2O5 crystals on the surface of the
coating after annealing to 500 {\deg}C for 42 at.% V and 700 {\deg}C for 18
at.% V metal fraction respectively. The highest thermal stability was shown for
pure {\gamma}-Al2O3-coating, which transformed to {\alpha}-Al2O3 after
annealing to 1100{\deg} C. Highest hardness was observed for the Al-rich
oxides, ~24 GPa. The latter decreased with increasing V-content, larger than 7
at.% V metal fraction. The measured hardness after annealing in air decreased
in conjunction with the onset of further oxidation of the coatings
- …
