38,037 research outputs found

    Data-Driven Shape Analysis and Processing

    Full text link
    Data-driven methods play an increasingly important role in discovering geometric, structural, and semantic relationships between 3D shapes in collections, and applying this analysis to support intelligent modeling, editing, and visualization of geometric data. In contrast to traditional approaches, a key feature of data-driven approaches is that they aggregate information from a collection of shapes to improve the analysis and processing of individual shapes. In addition, they are able to learn models that reason about properties and relationships of shapes without relying on hard-coded rules or explicitly programmed instructions. We provide an overview of the main concepts and components of these techniques, and discuss their application to shape classification, segmentation, matching, reconstruction, modeling and exploration, as well as scene analysis and synthesis, through reviewing the literature and relating the existing works with both qualitative and numerical comparisons. We conclude our report with ideas that can inspire future research in data-driven shape analysis and processing.Comment: 10 pages, 19 figure

    Recovering Grammar Relationships for the Java Language Specification

    Get PDF
    Grammar convergence is a method that helps discovering relationships between different grammars of the same language or different language versions. The key element of the method is the operational, transformation-based representation of those relationships. Given input grammars for convergence, they are transformed until they are structurally equal. The transformations are composed from primitive operators; properties of these operators and the composed chains provide quantitative and qualitative insight into the relationships between the grammars at hand. We describe a refined method for grammar convergence, and we use it in a major study, where we recover the relationships between all the grammars that occur in the different versions of the Java Language Specification (JLS). The relationships are represented as grammar transformation chains that capture all accidental or intended differences between the JLS grammars. This method is mechanized and driven by nominal and structural differences between pairs of grammars that are subject to asymmetric, binary convergence steps. We present the underlying operator suite for grammar transformation in detail, and we illustrate the suite with many examples of transformations on the JLS grammars. We also describe the extraction effort, which was needed to make the JLS grammars amenable to automated processing. We include substantial metadata about the convergence process for the JLS so that the effort becomes reproducible and transparent

    A Monitoring Language for Run Time and Post-Mortem Behavior Analysis and Visualization

    Get PDF
    UFO is a new implementation of FORMAN, a declarative monitoring language, in which rules are compiled into execution monitors that run on a virtual machine supported by the Alamo monitor architecture.Comment: In M. Ronsse, K. De Bosschere (eds), proceedings of the Fifth International Workshop on Automated Debugging (AADEBUG 2003), September 2003, Ghent. cs.SE/030902

    The Body Dances: Carnival Dance and Organization

    Get PDF
    Building on the work of Pierre Bourdieu and Maurice Merleau-Ponty we seek to open up traditional categories of thought surrounding the relation `body-organization' and elicit a thought experiment: What happens if we move the body from the periphery to the centre? We pass the interlocking theoretical concepts of object-body/subject-body and habitus through the theoretically constructed empirical case of `carnival dance' in order to re-evaluate such key organizational concepts as knowledge and learning. In doing so, we connect with an emerging body of literature on `sensible knowledge'; knowledge that is produced and preserved within bodily practices. The investigation of habitual appropriation in carnival dance also allows us to make links between repetition and experimentation, and reflect on the mechanism through which the principles of social organization, whilst internalized and experienced as natural, are embodied so that humans are capable of spontaneously generating an infinite array of appropriate actions. This perspective on social and organizational life, where change and permanence are intricately interwoven, contrasts sharply with the dominant view in organization studies which juxtaposes change/ creativity and stability

    A Connectionist Theory of Phenomenal Experience

    Get PDF
    When cognitive scientists apply computational theory to the problem of phenomenal consciousness, as many of them have been doing recently, there are two fundamentally distinct approaches available. Either consciousness is to be explained in terms of the nature of the representational vehicles the brain deploys; or it is to be explained in terms of the computational processes defined over these vehicles. We call versions of these two approaches vehicle and process theories of consciousness, respectively. However, while there may be space for vehicle theories of consciousness in cognitive science, they are relatively rare. This is because of the influence exerted, on the one hand, by a large body of research which purports to show that the explicit representation of information in the brain and conscious experience are dissociable, and on the other, by the classical computational theory of mind – the theory that takes human cognition to be a species of symbol manipulation. But two recent developments in cognitive science combine to suggest that a reappraisal of this situation is in order. First, a number of theorists have recently been highly critical of the experimental methodologies employed in the dissociation studies – so critical, in fact, it’s no longer reasonable to assume that the dissociability of conscious experience and explicit representation has been adequately demonstrated. Second, classicism, as a theory of human cognition, is no longer as dominant in cognitive science as it once was. It now has a lively competitor in the form of connectionism; and connectionism, unlike classicism, does have the computational resources to support a robust vehicle theory of consciousness. In this paper we develop and defend this connectionist vehicle theory of consciousness. It takes the form of the following simple empirical hypothesis: phenomenal experience consists in the explicit representation of information in neurally realized PDP networks. This hypothesis leads us to re-assess some common wisdom about consciousness, but, we will argue, in fruitful and ultimately plausible ways

    Defining Models - Meta Models versus Graph Grammars

    Get PDF
    The precise specification of software models is a major concern in model-driven design of object-oriented software. Metamodelling and graph grammars are apparent choices for such specifications. Metamodelling has several advantages: it is easy to use, and provides procedures that check automatically whether a model is valid or not. However, it is less suited for proving properties of models, or for generating large sets of example models. Graph grammars, in contrast, offer a natural procedure - the derivation process - for generating example models, and they support proofs because they define a graph language inductively. However, not all graph grammars that allow to specify practically relevant models are easily parseable. In this paper, we propose contextual star grammars as a graph grammar approach that allows for simple parsing and that is powerful enough for specifying non-trivial software models. This is demonstrated by defining program graphs, a language-independent model of object-oriented programs, with a focus on shape (static structure) rather than behavior
    • …
    corecore