456 research outputs found

    Primal-Dual Algorithms for Non-negative Matrix Factorization with the Kullback-Leibler Divergence

    Get PDF
    Non-negative matrix factorization (NMF) approximates a given matrix as a product of two non-negative matrices. Multiplicative algorithms deliver reliable results, but they show slow convergence for high-dimensional data and may be stuck away from local minima. Gradient descent methods have better behavior, but only apply to smooth losses such as the least-squares loss. In this article, we propose a first-order primal-dual algorithm for non-negative decomposition problems (where one factor is fixed) with the KL divergence, based on the Chambolle-Pock algorithm. All required computations may be obtained in closed form and we provide an efficient heuristic way to select step-sizes. By using alternating optimization, our algorithm readily extends to NMF and, on synthetic examples, face recognition or music source separation datasets, it is either faster than existing algorithms, or leads to improved local optima, or both

    A Nonconvex Splitting Method for Symmetric Nonnegative Matrix Factorization: Convergence Analysis and Optimality

    Get PDF
    Symmetric nonnegative matrix factorization (SymNMF) has important applications in data analytics problems such as document clustering, community detection and image segmentation. In this paper, we propose a novel nonconvex variable splitting method for solving SymNMF. The proposed algorithm is guaranteed to converge to the set of Karush-Kuhn-Tucker (KKT) points of the nonconvex SymNMF problem. Furthermore, it achieves a global sublinear convergence rate. We also show that the algorithm can be efficiently implemented in parallel. Further, sufficient conditions are provided which guarantee the global and local optimality of the obtained solutions. Extensive numerical results performed on both synthetic and real data sets suggest that the proposed algorithm converges quickly to a local minimum solution.Comment: IEEE Transactions on Signal Processing (to appear
    • …
    corecore