7 research outputs found

    Image Mapping and Object Removal Using ADM in Image Inpainting: Review

    Get PDF
    Image inpainting is a technology for restoring the damaged parts of an image by referring to the information from the undamaged parts to make the restored image look “complete”, “continuous” and “natural”. Inpainting traditionally has been done by professional restorers. For instance, in the valuable painting such as in the museum world would be carried out by a skilled art conservator or art restorer. But this process is manual so it is time consuming. Digital Image Inpainting tries to imitate this process and perform the Inpainting automatically. The aim of this work is to develop an automatic system that can remove unwanted objects from the image and restore the image in undetectable way. Among various image inpainting algorithms Alternating Direction Method (ADM) is used for image restoration. ADM works well for solving inverse problem. In this paper, various applications of ADM method for image restoration are discussed. DOI: 10.17762/ijritcc2321-8169.15030

    Recent Progress in Image Deblurring

    Full text link
    This paper comprehensively reviews the recent development of image deblurring, including non-blind/blind, spatially invariant/variant deblurring techniques. Indeed, these techniques share the same objective of inferring a latent sharp image from one or several corresponding blurry images, while the blind deblurring techniques are also required to derive an accurate blur kernel. Considering the critical role of image restoration in modern imaging systems to provide high-quality images under complex environments such as motion, undesirable lighting conditions, and imperfect system components, image deblurring has attracted growing attention in recent years. From the viewpoint of how to handle the ill-posedness which is a crucial issue in deblurring tasks, existing methods can be grouped into five categories: Bayesian inference framework, variational methods, sparse representation-based methods, homography-based modeling, and region-based methods. In spite of achieving a certain level of development, image deblurring, especially the blind case, is limited in its success by complex application conditions which make the blur kernel hard to obtain and be spatially variant. We provide a holistic understanding and deep insight into image deblurring in this review. An analysis of the empirical evidence for representative methods, practical issues, as well as a discussion of promising future directions are also presented.Comment: 53 pages, 17 figure

    ADMM in Krylov Subspace and Its Application to Total Variation Restoration of Spatially Variant Blur

    Get PDF
    In this paper we propose an efficient method for a convex optimization problem which involves a large nonsymmetric and non-Toeplitz matrix. The proposed method is an instantiation of the alternating direction method of multipliers applied in Krylov subspace. Our method offers significant advantages in computational speed for the convex optimization problems involved with general matrices of large size. We apply the proposed method to the restoration of spatially variant blur. The matrix representing spatially variant blur is not block circulant with circulant blocks (BCCB). Efficient implementation based on diagonalization of BCCB matrices by the discrete Fourier transform is not applicable for spatially variant blur. Since the proposed method can efficiently work with general matrices, the restoration of spatially variant blur is a good application of our method. Experimental results for total variation restoration of spatially variant blur show that the proposed method provides meaningful solutions in a short time.clos

    Recent Progress in Image Deblurring

    Full text link
    This paper comprehensively reviews the recent development of image deblurring, including non-blind/blind, spatially invariant/variant deblurring techniques. Indeed, these techniques share the same objective of inferring a latent sharp image from one or several corresponding blurry images, while the blind deblurring techniques are also required to derive an accurate blur kernel. Considering the critical role of image restoration in modern imaging systems to provide high-quality images under complex environments such as motion, undesirable lighting conditions, and imperfect system components, image deblurring has attracted growing attention in recent years. From the viewpoint of how to handle the ill-posedness which is a crucial issue in deblurring tasks, existing methods can be grouped into five categories: Bayesian inference framework, variational methods, sparse representation-based methods, homography-based modeling, and region-based methods. In spite of achieving a certain level of development, image deblurring, especially the blind case, is limited in its success by complex application conditions which make the blur kernel hard to obtain and be spatially variant. We provide a holistic understanding and deep insight into image deblurring in this review. An analysis of the empirical evidence for representative methods, practical issues, as well as a discussion of promising future directions are also presented
    corecore