8,881 research outputs found

    A Latent Source Model for Patch-Based Image Segmentation

    Full text link
    Despite the popularity and empirical success of patch-based nearest-neighbor and weighted majority voting approaches to medical image segmentation, there has been no theoretical development on when, why, and how well these nonparametric methods work. We bridge this gap by providing a theoretical performance guarantee for nearest-neighbor and weighted majority voting segmentation under a new probabilistic model for patch-based image segmentation. Our analysis relies on a new local property for how similar nearby patches are, and fuses existing lines of work on modeling natural imagery patches and theory for nonparametric classification. We use the model to derive a new patch-based segmentation algorithm that iterates between inferring local label patches and merging these local segmentations to produce a globally consistent image segmentation. Many existing patch-based algorithms arise as special cases of the new algorithm.Comment: International Conference on Medical Image Computing and Computer Assisted Interventions 201

    Density estimation for grouped data with application to line transect sampling

    Full text link
    Line transect sampling is a method used to estimate wildlife populations, with the resulting data often grouped in intervals. Estimating the density from grouped data can be challenging. In this paper we propose a kernel density estimator of wildlife population density for such grouped data. Our method uses a combined cross-validation and smoothed bootstrap approach to select the optimal bandwidth for grouped data. Our simulation study shows that with the smoothing parameter selected with this method, the estimated density from grouped data matches the true density more closely than with other approaches. Using smoothed bootstrap, we also construct bias-adjusted confidence intervals for the value of the density at the boundary. We apply the proposed method to two grouped data sets, one from a wooden stake study where the true density is known, and the other from a survey of kangaroos in Australia.Comment: Published in at http://dx.doi.org/10.1214/09-AOAS307 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    A concave pairwise fusion approach to subgroup analysis

    Full text link
    An important step in developing individualized treatment strategies is to correctly identify subgroups of a heterogeneous population, so that specific treatment can be given to each subgroup. In this paper, we consider the situation with samples drawn from a population consisting of subgroups with different means, along with certain covariates. We propose a penalized approach for subgroup analysis based on a regression model, in which heterogeneity is driven by unobserved latent factors and thus can be represented by using subject-specific intercepts. We apply concave penalty functions to pairwise differences of the intercepts. This procedure automatically divides the observations into subgroups. We develop an alternating direction method of multipliers algorithm with concave penalties to implement the proposed approach and demonstrate its convergence. We also establish the theoretical properties of our proposed estimator and determine the order requirement of the minimal difference of signals between groups in order to recover them. These results provide a sound basis for making statistical inference in subgroup analysis. Our proposed method is further illustrated by simulation studies and analysis of the Cleveland heart disease dataset
    • …
    corecore