341 research outputs found

    LMI Approach to Exponential Stability and Almost Sure Exponential Stability for Stochastic Fuzzy Markovian-Jumping Cohen-Grossberg Neural Networks with Nonlinear p-Laplace Diffusion

    Get PDF
    The robust exponential stability of delayed fuzzy Markovian-jumping Cohen-Grossberg neural networks (CGNNs) with nonlinear p-Laplace diffusion is studied. Fuzzy mathematical model brings a great difficulty in setting up LMI criteria for the stability, and stochastic functional differential equations model with nonlinear diffusion makes it harder. To study the stability of fuzzy CGNNs with diffusion, we have to construct a Lyapunov-Krasovskii functional in non-matrix form. But stochastic mathematical formulae are always described in matrix forms. By way of some variational methods in W1,p(Ω), Itô formula, Dynkin formula, the semi-martingale convergence theorem, Schur Complement Theorem, and LMI technique, the LMI-based criteria on the robust exponential stability and almost sure exponential robust stability are finally obtained, the feasibility of which can efficiently be computed and confirmed by computer MatLab LMI toolbox. It is worth mentioning that even corollaries of the main results of this paper improve some recent related existing results. Moreover, some numerical examples are presented to illustrate the effectiveness and less conservatism of the proposed method due to the significant improvement in the allowable upper bounds of time delays

    ПІДВИЩЕННЯ СТАБІЛЬНОСТІ ЗВ’ЯЗКІВ В ШТУЧНИХ НЕЙРОННИХ МЕРЕЖАХ

    Get PDF

    Practical Exponential Stability of Impulsive Stochastic Reaction-Diffusion Systems With Delays

    Get PDF

    Dynamical Behaviors of Stochastic Hopfield Neural Networks with Both Time-Varying and Continuously Distributed Delays

    Get PDF
    This paper investigates dynamical behaviors of stochastic Hopfield neural networks with both time-varying and continuously distributed delays. By employing the Lyapunov functional theory and linear matrix inequality, some novel criteria on asymptotic stability, ultimate boundedness, and weak attractor are derived. Finally, an example is given to illustrate the correctness and effectiveness of our theoretical results

    Stochastic Dynamics of Nonautonomous Cohen-Grossberg Neural Networks

    Get PDF
    This paper is devoted to the study of the stochastic stability of a class of Cohen-Grossberg neural networks, in which the interconnections and delays are time-varying. With the help of Lyapunov function, Burkholder-Davids-Gundy inequality, and Borel-Cantell's theory, a set of novel sufficient conditions on pth moment exponential stability and almost sure exponential stability for the trivial solution of the system is derived. Compared with the previous published results, our method does not resort to the Razumikhin-type theorem and the semimartingale convergence theorem. Results of the development as presented in this paper are more general than those reported in some previously published papers. An illustrative example is also given to show the effectiveness of the obtained results
    corecore