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Practical Exponential Stability of Impulsive
Stochastic Reaction–Diffusion Systems With Delays

Qi Yao , Ping Lin , Linshan Wang, Member, IEEE, and Yangfan Wang

Abstract—This article studies the practical exponential stability
of impulsive stochastic reaction–diffusion systems (ISRDSs) with
delays. First, a direct approach and the Lyapunov method are
developed to investigate the pth moment practical exponential
stability and estimate the convergence rate. Note that these two
methods can also be used to discuss the exponential stability
of systems in certain conditions. Then, the practical stability
results are successfully applied to the impulsive reaction–diffusion
stochastic Hopfield neural networks (IRDSHNNs) with delays. By
the illustration of four numerical examples and their simulations,
our results in this article are proven to be effective in dealing
with the problem of practical exponential stability of ISRDSs
with delays, and may be regarded as stabilization results.

Index Terms—Hopfield neural networks, impulses, Lyapunov
method, practical exponential stability, stochastic reaction–
diffusion systems with delays.

I. INTRODUCTION

THE THEORY of stochastic systems has been exten-
sively studied for many years because of the investigation

of numerous physical and engineering problems [1]–[5]. We
notice that time delays could not be ignored in many prac-
tical systems, such as neural networks, ecological systems,
and electric circuits, and may lead to oscillation, instability,
or other degradation of system performance [6]–[8]. Besides,
diffusion effects usually inevitably occur in man-made neural
networks when electrons transport in a nonuniform electro-
magnetic field. And it is also common to consider them in
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other real-world processes, like a chemical reaction and bio-
logical immigration, since the effects always influence the
stability of systems [9]–[11]. What is more, impulses always
exist in basic models to describe the dynamical processes
that are subject to sudden changes in their states, and they
have been widely used to stabilize and synchronize nonlinear
unstable dynamical systems and chaotic systems [12]–[14].
Therefore, it is of prime importance to consider the delay
effects, reaction–diffusion effects, and impulsive effects on the
dynamical behavior of systems, and these effects also have
attracted considerable interest [15]–[20].

In the past few years, researchers have paid a lot of
attention to exponential stability or stabilization of systems.
(See [20]–[29] and the references therein.) For example,
Yang and Xu [25] analyzed the global exponential stability
of impulsive delayed systems by establishing an impulsive
delayed differential inequality. Wu et al. [28] discussed the
stability and stabilization of stochastic neural networks with
neutral type by combining a Lyapunov–Krasovskii functional
with the linear matrix inequalities. Furthermore, Wei et al. [20]
considered the global exponential stability in the mean-square
sense of stochastic impulsive reaction–diffusion system with
stabilizing impulses.

On the other hand, we notice that the desired state of a
system may be mathematically unstable, but the system may
oscillate sufficiently in a small neighborhood of this state.
In this case, it is still important to discuss the performance
since it is considered acceptable. This case yields the con-
cept of practical stability, which aims to obtain the ultimate
boundedness of state trajectory, and this concept is more use-
ful for many problems, like the traveling of a space vehicle
between two points and keeping the temperature of a chemical
process within certain bounds [30]. Besides, practical stabil-
ity is also suitable in those situations, such as the delayed
logistic systems, the switched delayed systems, and so on
[31], [32]. Many interesting results on the practical stabil-
ity of different systems have been reported [32]–[37]. For
instance, Xu and Zhai [34] used a direct method to study
the practical stability and stabilization problems for hybrid
and switched systems. Caraballo et al. [37] investigated the
pth moment practical exponential stability and almost sure
practical exponential stability of impulsive stochastic delayed
systems with the Lyapunov–Razumikhin method. However, to
the best of our knowledge, those works have not been done
for impulsive stochastic reaction–diffusion systems (ISRDSs)
with delays yet.
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In this article, we study the practical exponential stabil-
ity of ISRDSs with delays, and present sufficient conditions
which may imply the exponential stability under certain cir-
cumstances, and extend some results in [37]–[40]. A precise
description of the systems will be given in the next section.
The main contributions of this article are listed as follows.

1) The pth moment practical exponential stability and the
convergence rate of ISRDSs with delays are studied for
the first time in two ways: a) a direct approach and
b) the Lyapunov method. With the direct approach, prac-
tical stability theorems of the systems with stabilizing
impulses and destabilizing impulses are established. And
using the Lyapunov method, the systems with stabilizing
and destabilizing impulses are investigated simultane-
ously, but there is a threshold for the product of all
impulsive strengths.

2) The practical stabilization results of the systems can be
derived from our proposed results, which is verified by
examples. Also, the exponential stability of the systems
can be obtained by the practical exponential stability if
the origin is an equilibrium point.

3) By applying the theoretical results to the impulsive
reaction–diffusion stochastic Hopfield neural networks
(IRDSHNNs) with delays, some easy-to-test algebraic
criteria for the practical stability of the networks are
proposed.

4) Four numerical examples are given to demonstrate the
applicability of our results. The effects of diffusion terms
and time delays on the practical exponential stability of
systems are also illustrated by these four examples.

II. PRELIMINARIES

Notations: Let R be the set of real numbers, Z+ be the
set of positive integer numbers, and R

l be the l-dimensional
real space equipped with the Euclidean norm |·|. (�,F ,P)

is a complete probability space with filtration {F t}t≥0.
L2(O)n denotes a Hilbert space with the norm ‖u‖ =
(
∫
O|u(t, x)|2dx)1/2, and (·, ·) is the inner product. H1

0(O) is a
Hilbert space with the norm ‖|u‖| = ‖∇u‖. Cb([−τ, 0] ×
O, L2(O)n) represents the Banach space of all continuous
functions from [−τ, 0]×O to L2(O)n, with the norm ‖φ‖C =
supθ∈[−τ,0] ‖φ(θ)‖. Cb

F 0
denotes the family of F 0-measurable

bounded Cb([−τ, 0] ×O, L2(O)n)-valued stochastic variables
φ with E‖φ‖C < ∞. ‖B‖F = [tr(BBT)]1/2 is the Frobenius
norm, and ‖B‖max = maxij{|bij|} is the max norm, where
B = (bij)n×m, and tr is the trace operator. Let W(t, x) =∑∞

n=1
√

λnβn(t)en(x), where λn ≥ 0 (n = 1, 2, . . . , ) are non-
negative real numbers, {βn(t)}∞n=1 is a sequence of standard
Brownian motions mutually independent over (�,F ,P), and
{en(x)}∞n=1 is a complete orthonormal basis in L2(O)m. Let
Q be a positive definite, self-adjoint, and Hilbert–Schmidt
operator defined by Qen = λnen with a finite trace trQ =∑∞

n=1 λn < ∞. L0
2(	, L2(O)n) is the space of all Hilbert–

Schmidt operators from 	 � Q(1/2)(L2(O)n) into L2(O)n

with norm ‖�‖∗ �
√

tr(�Q�∗), where �∗ is the adjoint
of �. Mn,m

2 [t0, t] is the set of those nonanticipating func-
tions for which the n × m-matrix-valued functions G(t, ω) are

with probability 1 satisfied
∫ t

t0
|G(s, ω)|2ds<∞, and Mn,m

2 =
⋂

t>t0 Mn,m
2 [t0, t]. u(t+k ) and u(t−k ) represent the right-hand and

left-hand limit of u(tk), respectively. PC([−τ, 0]×O, L2(O)n)

is a Banach space of functions from [−τ, 0] × O to L2(O)n,
which are continuous everywhere except for some tk at which
u(t−k ) and u(t+k ) exist and u(tk) = u(t+k ). Other notations are
the same as those in [41].

In this article, we consider the following ISRDSs with
delays:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

du = (∇ · (D(x) ◦ ∇u) + f (t, ut))dt
+ G(t, ut)dW(t, x), t �= tk

u(tk) − u
(
t−k

) = Pku
(
t−k

)
, k ∈ Z+

u |x∈∂O= 0, t ≥ t0 ≥ 0
u(t0 + θ, x, ω) = φ(θ, x, ω) ∈ Cb

F 0

θ ∈ [−τ, 0], x ∈ O, ω ∈ �

(1)

where x = (x1, x2, . . . , xl)
T ∈ R

l, u = (u1(t, x, ω),

u2(t, x, ω), . . . ,un(t, x, ω))T , ut = u(t + θ, x, ω) = (u1(t +
θ, x, ω), u2(t + θ, x, ω), . . . , un(t + θ, x, ω))T , θ ∈ [−τ, 0].
D(x) = (Dik(x))n×l, ∇u = (∇u1,∇u2, . . . ,∇un)

T ,
∇ui = ((∂ui/∂x1), (∂ui/∂x2), . . . , (∂ui/∂xl)), i = 1, 2, . . . , n.
∇ · (D(x) ◦ ∇u) = (

∑l
j=1 [(∂(D1j(x)(∂u1/∂xj)))/∂xj],∑l

j=1 [(∂(D2j(x)(∂u2/∂xj)))/∂xj], . . . ,
∑l

j=1 [(∂(Dnj(x)(∂un/∂

xj)))/∂xj])T . f (t, ut) = (f1(t, ut), f2(t, ut), . . . , fn (t, ut))
T ,

and G = (Gij)n×m ∈ Mn,m
2 are the Borel measur-

able drift function and diffusion matrix, respectively.
φ(θ, x, ω) = (φ1(θ, x, ω), φ2(θ, x, ω), . . . , φn(θ, x, ω))T is
the initial data, and O is an open connected and bounded sub-
set of R

l with a sufficiently regular boundary ∂O. Moreover,
the impulsive times tk satisfy t0 < t1 < · · · < tk < · · · , and
limk→∞ tk = ∞. Pk = diag(p1k, p2k, . . . , pnk) is the impulsive
matrix at time tk (see [20], [26], [37]). We assume that u is
right continuous at t = tk, that is, u(tk) = u(t+k ). Hence, the
solutions to (1) are piecewise right-hand continuous functions
with discontinuities at t = tk for k ∈ Z+.

Throughout this article, we make the following assumptions.
(H1): There exists α > 0 such that Dij(x) ≥ α, i =

1, 2, . . . , n, j = 1, 2, . . . , l.
(H2): There exists ρ > 0 such that ‖f (t, u) − f (t, v)‖ ∨

‖G(t, u) − G(t, v)‖∗ ≤ ρ‖u − v‖, where u, v ∈ L2(O)n.
(H3): There exists K > 0 such that ‖f (t, u)‖2∨‖G(t, u)‖2∗ ≤

K2(1 + ‖u‖2), where u ∈ L2(O)n.
Here, we define a linear operator as follows:

A : D(A ) → L2(O)n, A u = ∇ · (D(x) ◦ ∇u) (2)

where u ∈ D(A ), and D(A ) = H2(O)n ∩ H1
0(O)n ⊂ L2(O)n.

Definition 1 [37]: For p > 0, system (1) is said to be
the pth moment practically exponentially stable if there exist
positive constants λ, M1, and M2 such that for all φ ∈ Cb

F 0

E‖u(t, x, ω)‖p ≤ M1E‖φ‖p
Ce−λ(t−t0) + M2, t ≥ t0. (3)

Remark 1: The inequality (3) shows that u(t) is ultimately
bounded by a small bound M2, that is, E‖u(t, x, ω)‖p is small
for sufficiently large t. As can be seen later, M2 depends on
f (t, 0) and G(t, 0) in this article, and in particular, M2 = 0 if
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f (t, 0) = 0 and G(t, 0) = 0. So the practical exponential sta-
bility we discuss in this article implies the exponential stability
of the origin.

Lemma 1 (Poincaré Inequality [42], [43]): Let O be an
open bounded domain in R

l with a smooth boundary, then
‖u‖ ≤ β−1‖|u‖|, u ∈ H1

0(O), where β depends on the
domain O.

III. PRACTICAL STABILITY OF MILD SOLUTIONS: DIRECT

APPROACH

In this section, we discuss the practical stability of (1) using
a direct approach. First, let δ = supk∈Z+ ‖I + Pk‖2

max.
Theorem 1: Let (H1)–(H3) hold. Suppose that 0 < δ ≤ 1,

and 2αβ2 − 1 − 4ρ2 > 0. Then, system (1) is practically
exponentially stable in the mean-square sense, and the con-
vergence rate is greater than or equal to λ, where λ − 2αβ2 +
1 + 4ρ2eλτ < 0.

Proof: Like the proof in [44] and [45], we can obtain the
existence–uniqueness of mild solution to system (1). Let u(t)
be a mild solution to (1) and V(t) = ‖u(t)‖2, then for t ∈
(tk−1, tk)

dV(t) = 2(u,A u)dt + 2(u, f (t, ut))dt + 2(u, G(t, ut))

× dW(t, x) + tr
(
G(t, ut)QG∗(t, ut)

)
dt. (4)

Integrating both sides of (4) from tk−1 to t, and then taking
the expectation and the derivative may lead to

D+EV(t) = 2E(u,A u) + 2E(u, f (t, ut))

+ E‖G(t, ut)‖2∗. (5)

From (H1), Lemma 1, and the Gauss formula, one obtains

2E(u,A u) = −2E
∫

O

n∑

i=1

l∑

j=1

Dij

(
∂ui

∂xj

)2

dx

≤ −2αE‖|u‖|2
≤ −2αβ2EV(t). (6)

It then follows from (H2) and the Young inequality that:

2E(u, f (t, ut)) ≤ EV(t) + 2ρ2E sup
s∈[t−τ,t]

V(s)

+ 2‖f (t, 0)‖2 (7)

E‖G(t, ut)‖2 ≤ 2ρ2E sup
s∈[t−τ,t]

V(s) + 2‖G(t, 0)‖2∗. (8)

Therefore, according to (5)–(8) and (H3), one can deduce that
for t ∈ (tk−1, tk)

D+EV(t) ≤ −
(

2αβ2 − 1
)

EV(t) + 4ρ2EV(t)

+ 2‖f (t, 0)‖2 + 2‖G(t, 0)‖2∗
≤ −

(
2αβ2 − 1

)
EV(t) + 4ρ2EV(t) + 4K2 (9)

where V(t) = sups∈[t−τ,t] V(s). Since 2αβ2 − 1 − 4ρ2 > 0,
then there exists λ > 0 such that λ − 2αβ2 + 1 + 4ρ2eλτ < 0.
Then, we choose M > 1, and let μ(t) = ME‖φ‖2

Ce−λ(t−t0) +
[4K2/(2αβ2 − 1 − 4ρ2)]. Next, we claim that EV(t) < μ(t),

t ≥ t0. We will first show that for t ∈ [t0, t1), EV(t) < μ(t).
In fact, it is clear that

EV(t0) ≤ E‖φ‖2
C < ME‖φ‖2

C + 4K2

2αβ2−1−4ρ2

= μ(t0). (10)

Then, suppose that there exists t′ ∈ (t0, t1) such that

EV
(
t′
) = μ

(
t′
)

(11)

EV(t) < μ(t), t ∈ [
t0 − τ, t′

)
(12)

D+EV
(
t′
) ≥ D+μ

(
t′
)
. (13)

It then follows that:

D+μ
(
t′
)

> −
(

2αβ2 − 1
)

EV
(
t′
) + 4ρ2EV(t′) + 4K2

≥ D+EV
(
t′
)

(14)

which is a contradiction with (13). Thus, EV(t) < μ(t), t ∈
[t0, t1). Note that 0 < δ ≤ 1, then we have

EV(t1) ≤ EV
(
t−1

)
< ME‖φ‖2

Ce−λ(t1−t0)

+ 4K2

2αβ2−1−4ρ2 . (15)

Then, similar to the proof on [t0, t1), we have EV(t) < μ(t),
t ∈ [t1, t2). By simple induction, it can be deduced that

E‖u(t)‖2 ≤ ME‖φ‖2
Ce−λ(t−t0) + 4K2

2αβ2−1−4ρ2 . (16)

Therefore, system (1) is practically exponentially stable in the
mean-square sense.

Theorem 2: Suppose that (H1)–(H3) hold, then we have the
following.

1) If 0 < δ ≤ 1, and

2αβ2 − 1 − ln δ

h
− 4ρ2

δ
> 0 (17)

where h = supk∈Z+{tk − tk−1} < ∞, then (1) is practi-
cally exponentially stable in the mean-square sense, and
the convergence rate is greater than or equal to λ, where
λ satisfies λ − 2αβ2 + 1 + (ln δ/h) + (4ρ2/δ)eλτ = 0.

2) If δ > 1, and

2αβ2 − 1 − ln δ
h − 4ρ2δ > 0 (18)

where h = infk∈Z+{tk−tk−1} < ∞, then (1) is practically
exponentially stable in the mean-square sense, and the
convergence rate is greater than or equal to λ, where λ

satisfies λ − 2αβ2 + 1 + (ln δ/h) + 4ρ2δeλτ = 0.
Proof: Let V(t) = ‖u(t)‖2. According to the proof of

Theorem 1, one can obtain that for t ∈ (tk−1, tk)

D+EV(t) ≤ −(2αβ2 − 1)EV(t) + 4ρ2EV(t)

+ 4K2. (19)

Also

EV(tk) = E‖u(tk)‖2 ≤ ‖I + Pk‖2
maxEV

(
t−k

)
. (20)

For any ε > 0, let ν(t) be a solution to the following systems:
⎧
⎪⎪⎨

⎪⎪⎩

D+ν(t) = −(
2αβ2 − 1

)
ν(t) + 4ρ2ν(t)

+ 4K2 + ε, t �= tk
ν(tk) = ‖I + Pk‖2

maxν
(
t−k

)
, k ∈ Z+

ν(t0 + θ) = E‖φ(θ, x, ω)‖2, θ ∈ [−τ, 0].

(21)



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON CYBERNETICS

Then, in terms of [20, Lemma 3], we can obtain that

EV(t) ≤ ν(t), t ≥ t0. (22)

From the formula for the variation of parameters in [25], we
obtain

ν(t) = W(t, t0)ν(t0) +
∫ t

t0
W(t, s)

×
[
4ρ2ν(s) + 4K2 + ε

]
ds (23)

where W(t, s), t, s ≥ 0 is the Cauchy matrix of linear system
{

D+w(t) = −(
2αβ2 − 1

)
w(t), t �= tk

w(tk) = ‖I + Pk‖2
maxw

(
t−k

)
, k ∈ Z+.

(24)

Case (I): If 0 < δ ≤ 1, then we define a = 2αβ2 − 1 −
(ln δ/h). By the representation of the Cauchy matrix, we obtain

W(t, s) = e−(
2αβ2−1

)
(t−s)

∏

s<tk≤t

‖I + Pk‖2
max

≤ e
−

(
a+ ln δ

h

)
(t−s)

δ
t−s
h

−1 = 1
δ
e−a(t−s) (25)

where t ≥ s ≥ t0. Accordingly, for t ≥ t0

ν(t) ≤ E‖φ‖2
C

δ
e−a(t−t0) +

∫ t

t0

1
δ
e−a(t−s)

×
[
4ρ2ν(s) + 4K2 + ε

]
ds. (26)

Notice that 2αβ2 − 1 − (ln δ/h) − (4ρ2/δ) > 0, then there is
a constant λ > 0 such that λ − 2αβ2 + 1 + (ln δ/h) + (4ρ2/δ)

eλτ = 0. It is clear that for t ∈ [t0 − τ, t0]

ν(t) ≤ E‖φ‖2
C ≤ E‖φ‖2

C
δ

e−λ(t−t0)

+ 4K2+ε(
2αβ2−1− ln δ

h
− 4ρ2

δ

)
δ
. (27)

Next, we claim that for t ≥ t0

ν(t) ≤ E‖φ‖2
C

δ
e−λ(t−t0) + 4K2+ε(

2αβ2−1− ln δ

h
− 4ρ2

δ

)
δ
. (28)

If this is not true, then there exists t∗ > t0 such that

ν
(
t∗

)
>

E‖φ‖2
C

δ
e−λ(t∗−t0) + 4K2+ε(

2αβ2−1− ln δ

h
− 4ρ2

δ

)
δ

(29)

ν(t) ≤ E‖φ‖2
C

δ
e−λ(t−t0) + 4K2+ε(

2αβ2−1− ln δ

h
− 4ρ2

δ

)
δ

(30)

where t ∈ [t0 − τ, t∗). Thus

ν
(
t∗

) ≤ E‖φ‖2
C

δ
e−a(t∗−t0) +

∫ t∗

t0

1
δ
e−a(t∗−s)

×
[

4ρ2 · E‖φ‖2
C

δ
e−λ(s−τ−t0) + 4K2 + ε

+ 4ρ2 4K2+ε(
2αβ2−1− ln δ

h
− 4ρ2

δ

)
δ

]

ds

=
∫ t∗

t0

E‖φ‖2
C

δ
eλt0−at∗(a − λ)e(a−λ)sds

+
∫ t∗

t0

4K2+ε(
2αβ2−1− ln δ

h
− 4ρ2

δ

)
δ
ae−a(t∗−s)ds

+ E‖φ‖2
C

δ
e−a(t∗−t0)

<
E‖φ‖2

C
δ

e−λ(t∗−t0) + 4K2+ε(
2αβ2−1− ln δ

h
− 4ρ2

δ

)
δ

(31)

which contradicts (29). Therefore, (28) holds, and the proof is
completed.

Case (II): If δ > 1, then let a = 2αβ2 − 1 − (ln δ/h). By
the representation of the Cauchy matrix, we obtain

W(t, s) = e−(
2αβ2−1

)
(t−s)

∏

s<tk≤t

‖I + Pk‖2
max

≤ e
−

(
a+ ln δ

h

)
(t−s)

δ
t−s
h +1 = δe−a(t−s) (32)

where t ≥ s ≥ t0. Similar to the proof of case (I), we have

ν(t) ≤ δE‖φ‖2
Ce−λ(t−t0) + δ 4K2+ε

2αβ2−1− ln δ
h − 4ρ2

δ

(33)

which completes the proof.
Remark 2: When f (t, 0) = 0 and G(t, 0) = 0, one can infer

the exponential stability of the trivial solution to (1) from the
proof of Theorem 2.

Remark 3: We notice that (17) may imply 2αβ2 −
1−4ρ2 > 0 if 4ρ2h ≥ 1. In this case, Theorem 1 includes
some results of Theorem 2-1).

IV. PRACTICAL STABILITY OF MILD SOLUTIONS: THE

LYAPUNOV METHOD

In this section, we develop the Lyapunov method to study
the pth moment practical exponential stability.

Theorem 3: System (1) is the pth moment practically expo-
nentially stable if there exist constants ω1 > 0, ω2 > 0, a > 0,
b > 0, c ≥ 0, σk > 0, γ > 1, h > 0, and N ∈ Z+ and a
function V ∈ C1,2([t0 − τ,∞) × L2(O)n;R+) such that:

1) ω1‖u‖p ≤ V(t, u(t)) ≤ ω2‖u‖p;
2) LV(t, u(t)) ≤ aV(t, u(t)) + bV(t, u(t)) + c, where

V(t, u(t)) = sups∈[t−τ,t] V(s, u(s)), t ≥ t0, t �= tk,
k ∈ Z+;

3) EV(tk, u(t−k ) + Pku(t−k )) ≤ (1/σk)EV(t−k , u(t−k )), where
σN+k = σk, k ∈ Z+;

4) h = supk∈Z+{tk − tk−1} < ∞ and ah + bσN h < ln γ ;
5)

{∏
1≤j≤N−1

(
γ
σj

∨ 1
)

≤ σN
γ

, N ≥ 2

σk ≡ γ, N = 1.

Moreover, the convergence rate is greater than or equal to λ,
where λ satisfies ah + bσN heλτ < ln γ − λh.

Proof: On the basis of Condition 4), one can obtain that
there exist λ > 0 and ε0 > 0 such that

ah + γ+ε0
γ

bσN heλτ < ln γ − λh. (34)

Let V(t) = V(t, u(t)), V0 = sups∈[t0−τ,t0] V(s), and �(t) =
V(t)eλ(t−t0), t ≥ t0.

First, we claim that for any ε ∈ (0, ε0]

E�(t) < (γ + ε)
(

EV0 + c
λ

eλ(t−t0)
)
, t ∈ [t0, t1). (35)
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It is easy to find that E�(t0) = EV(t0) ≤ EV0 + (c/λ). If (35)
is not true for t ∈ (t0, t1), then there exist t0 ≤ t < t < t1 such
that

E�
(
t
) = (γ + ε)

(
EV0 + c

λ
eλ(t−t0)

)
(36)

E�
(
t
) = EV0 + c

λ
eλ(t−t0) (37)

E�(t) ≥ EV0 + c
λ

eλ(t−t0), t ∈ [
t, t

]
(38)

E�(t) ≤ (γ + ε)
(

EV0 + c
λ

eλ(t−t0)
)
, t ∈ [

t, t
]
. (39)

Also, for t ∈ [t0 − τ, t]

EV(t)
[
eλ(t−t0) ∨ 1

]
≤ (γ + ε)

(
EV0 + c

λ
eλ(t−t0)

)
. (40)

Then, one can obtain that for t ∈ [t, t]

D+E�(t) = eλ(t−t0)
[
aEV(t) + λEV(t) + bEV(t) + c

]

≤ (a + λ)eλ(t−t0)EV(t) + beλτ (γ + ε)

×
(

EV0 + c
λ

eλ(t−t0)
)

+ ceλ(t−t0)

≤ E�(t)[a + λ + beλτ (γ + ε)] + ceλ(t−t0)

which implies that

E�
(
t
) ≤ E�

(
t
)
e
∫ t

t

(
a+λ+beλτ (γ+ε)

)
dt

+
∫ t

t
ceλ(s−t0)e

∫ t
s

(
a+λ+beλτ (γ+ε)

)
dtds.

Note that (σN /γ ) ≥ 1. Together with (34), it then follows
that:

(γ + ε)
(

EV0 + c
λ

eλ(t−t0)
)

≤ γ
t−t
h

(
EV0 + c

λ
eλ(t−t0)

)
+ γ

t−t
h c

∫ t

t
eλ(s−t0)ds

< γ
(

EV0 + c
λ

eλ(t−t0)
)

(41)

which is a contradiction, so (35) holds. From the arbitrary of ε,
we have E�(t) ≤ γ (EV0 + (c/λ)eλ(t−t0)), t ∈ [t0, t1). Notice
that

E�(t1) = EV(t1)e
λ(t1−t0) ≤ 1

σ1
EV

(
t−1

)
eλ(t1−t0)

≤ γ
σ1

(
EV0 + c

λ
eλ(t1−t0)

)
. (42)

There are two cases. If (γ /σ1) ≤ 1, then E�(t1) ≤ EV0 +
(c/λ)eλ(t1−t0). Similar to the above discussion on [t0, t1), we
can deduce that E�(t) ≤ γ (EV0+(c/λ)eλ(t−t0)), t ∈ [t1, t2). If
(γ /σ1) > 1, then we can derive that E�(t) ≤ (γ 2/σ1)(EV0 +
(c/λ)eλ(t−t0)), t ∈ [t1, t2). In fact, we only need to prove
that, for any ε ∈ (0, ε0], E�(t) < [(γ (γ + ε))/σ1](EV0 +
(c/λ)eλ(t−t0)), t ∈ [t1, t2). Suppose that this is not true, then
one may choose t1 ≤ t∗ < t∗ < t2 such that

E�
(
t∗

) = γ (γ+ε)
σ1

(
EV0 + c

λ
eλ(t∗−t0)

)
(43)

E�(t∗) = γ
σ1

(
EV0 + c

λ
eλ(t∗−t0)

)
(44)

E�(t) ≥ γ
σ1

(
EV0 + c

λ
eλ(t−t0)

)
, t ∈ [

t∗, t∗
]

(45)

E�(t) ≤ γ (γ+ε)
σ1

(
EV0 + c

λ
eλ(t−t0)

)
, t ∈ [

t∗, t∗
]

(46)

and considering E�(t) ≤ γ (EV0 + (c/λ)eλ(t−t0)), t ∈ [t0, t1),
we have

EV(t)
[
eλ(t−t0) ∨ 1

]
≤ γ (γ+ε)

σ1

(
EV0 + c

λ
eλ(t−t0)

)
(47)

where t ∈ [t0 − τ, t∗]. Then

D+E�(t) ≤ E�(t)
[
a + λ + beλτ (γ + ε)

] + ceλ(t−t0) (48)

where t ∈ [t∗, t∗]. Similar to (41), we have

γ (γ+ε)
σ1

(
EV0 + c

λ
eλ(t∗−t0)

)

≤ γ
t∗−t∗

h
γ
σ1

(
EV0 + c

λ
eλ(t∗−t0)

)
+ γ

t∗−t∗
h c

λ

× γ
σ1

(
eλ(t∗−t0) − eλ(t∗−t0)

)

≤ γ 2

σ1

(
EV0 + c

λ
eλ(t∗−t0)

)
(49)

which leads to a contradiction. So, if (γ /σ1) > 1, we have
E�(t) ≤ (γ 2/σ1)(EV0 + (c/λ)eλ(t−t0)), t ∈ [t1, t2). Then, it
can be derived that

E�(t) ≤
(

γ
σ1

∨ 1
)
γ
(

EV0 + c
λ

eλ(t−t0)
)
, t ∈ [t0, t2). (50)

If N = 1, then σk ≡ γ . From (50), one may obtain

E�(t) ≤ γ
(

EV0 + c
λ

eλ(t−t0)
)
, t ∈ [t0, t2). (51)

Notice that E�(t2) ≤ (1/σ2)E�(t−2 ) ≤ (γ /σ2)(EV0 +
(c/λ)eλ(t2−t0)) = EV0 + (c/λ)eλ(t2−t0). Similar to the proof
on [t0, t1), we can deduce that

E�(t) ≤ γ
(

EV0 + c
λ

eλ(t−t0)
)
, t ≥ t0, N = 1. (52)

If N > 1, suppose that

E�(t) ≤
∏

1≤j≤l−1

(
γ

σj
∨ 1

)

γ
(

EV0 + c

λ
eλ(t−t0)

)
(53)

where t ∈ [t0, tl), 2 ≤ l < N , and l ∈ Z+. Next, we will prove
that for any ε ∈ (0, ε0]

E�(t) <
∏

1≤j≤l

(
γ

σj
∨ 1

)

(γ + ε)
(

EV0 + c

λ
eλ(t−t0)

)
(54)

where t ∈ [tl, tl+1). This may lead to

E�(t) ≤
∏

1≤j≤l

(
γ

σj
∨ 1

)

γ
(

EV0 + c

λ
eλ(t−t0)

)
(55)

where t ∈ [t0, tl+1). It follows from (53) that:

E�(tl) ≤ 1

σl
EV

(
t−l

)
eλ(tl−t0)

≤
∏

1≤j≤l

(
γ

σj
∨ 1

)(
EV0 + c

λ
eλ(tl−t0)

)
. (56)

If (54) does not hold, then there exist tl ≤ tα < tα < tl+1 such
that

E�
(
tα

) =
∏

1≤j≤l

(
γ

σj
∨ 1

)

(γ + ε)

×
(

EV0 + c

λ
eλ(tα−t0)

)
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E�(tα) =
∏

1≤j≤l

(
γ

σj
∨ 1

)(
EV0 + c

λ
eλ(tα−t0)

)

E�(t) ≥
∏

1≤j≤l

(
γ

σj
∨ 1

)(
EV0 + c

λ
eλ(t−t0)

)

t ∈ [
tα, tα

]

E�(t) ≤
∏

1≤j≤l

(
γ

σj
∨ 1

)

(γ + ε)

×
(

EV0 + c

λ
eλ(t−t0)

)
, t ∈ [

tα, tα
]

EV(t)
[
eλ(t−t0) ∨ 1

]
≤

∏

1≤j≤l

(
γ

σj
∨ 1

)

(γ + ε)

×
(

EV0 + c

λ
eλ(t−t0)

)

t ∈ [
t0 − τ, tα

]
.

From Condition 2), we can then observe that for t ∈ [tα, tα]

D+E�(t) ≤ E�(t)
[
a + λ + beλτ (γ + ε)

] + ceλ(t−t0).

Like (49), we can obtain that this contradicts with (34).
Thus, (55) holds, which implies that

E�(t) ≤
∏

1≤j≤N−1

(
γ

σj
∨ 1

)

γ
(

EV0 + c

λ
eλ(t−t0)

)
(57)

where t ∈ [t0, tN ). By Condition 5), one can obtain that

E�(tN ) ≤ γ

σN

∏

1≤j≤N−1

(
γ

σj
∨ 1

)(
EV0 + c

λ
eλ(tN −t0)

)

≤ EV0 + c

λ
eλ(tN −t0). (58)

Next, we claim that E�(t) ≤ γ (EV0 + (c/λ)eλ(t−t0)), t ∈
[tN , tN+1), which is equal to prove, for any ε ∈ (0, ε0]

E�(t) < (γ + ε)
(

EV0 + c

λ
eλ(t−t0)

)
, t ∈ [

tN , tN+1
)
. (59)

Similarly, we assume that this is not true, which implies that
we can choose tN ≤ tβ < tβ < tN+1 such that

E�
(
tβ

) = (γ + ε)
(

EV0 + c

λ
eλ

(
tβ−t0

))
(60)

E�
(
tβ

) = EV0 + c

λ
eλ(tβ−t0) (61)

E�(t) ≥ EV0 + c

λ
eλ(t−t0), t ∈ [

tβ, tβ
]

(62)

E�(t) ≤ (γ + ε)
(

EV0 + c

λ
eλ(t−t0)

)
, t ∈ [

tβ, tβ
]
. (63)

Also

EV(t)
[
eλ(t−t0) ∨ 1

]
≤

∏

1≤j≤N−1

(
γ

σj
∨ 1

)

(γ + ε)

×
(

EV0 + c

λ
eλ(t−t0)

)

≤ σN
γ

(γ + ε)
(

EV0 + c

λ
eλ(t−t0)

)

t ∈ [
t0 − τ, tβ

]
(64)

which leads to

D+E�(t) ≤ (a + λ)E�(t) + b
σN
γ

(γ + ε)

×
(

EV0 + c

λ
eλ(t−t0)

)
eλτ + ceλ(t−t0)

≤ E�(t)

[

a + λ + beλτ σN
γ

(γ + ε)

]

+ ceλ(t−t0), t ∈ [
tβ, tβ

]
. (65)

Then, combining (34) and (60) with (61), one can observe that

(γ + ε)
(

EV0 + c

λ
eλ

(
tβ−t0

))
≤ γ

(
EV0 + c

λ
eλ

(
tβ−t0

))
(66)

which is a contradiction. Thus, (59) holds. In this way, we
have
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E�(t) ≤ γ
(
EV0 + c

λ
eλ(t−t0)

)
, t ∈ [

tN , tN+1
)

E�(t) ≤
(

γ
σ1

∨ 1
)
γ
(
EV0 + c

λ
eλ(t−t0)

)
, t ∈ [

tN+1, tN+2
)

· · ·
E�(t) ≤ ∏

1≤j≤N−1

(
γ
σj

∨ 1
)
γ
(
EV0 + c

λ
eλ(t−t0)

)

t ∈ [
t2N−1, t2N

)

E�(t) ≤ γ
(
EV0 + c

λ
eλ(t−t0)

)
, t ∈ [

t2N , t2N+1
)

· · ·
Therefore, it can be derived that

E�(t) ≤ max
1≤i≤N

∏

1≤j≤i

(
γ

σj
∨ 1

)

γ
(

EV0 + c

λ
eλ(t−t0)

)
, t ≥ t0.

That is, for t ≥ t0

EV(t) ≤ max
1≤i≤N

∏

1≤j≤i

(
γ

σj
∨ 1

)

γ EV0e−λ(t−t0)

+ max
1≤i≤N

∏

1≤j≤i

(
γ

σj
∨ 1

)

γ
c

λ

that is

E‖u(t)‖p ≤ max
1≤i≤N

∏

1≤j≤i

(
γ

σj
∨ 1

)
γω2

ω1
E‖φ‖p

Ce−λ(t−t0)

+ max
1≤i≤N

∏

1≤j≤i

(
γ

σj
∨ 1

)
γ c

λω1

and the proof is completed.
Remark 4: We mention that Condition 3) in Theorem 3

means the impulses are periodic. Especially, if N = 1, that
is, σk = σ , then it follows from the definition of σk in
Condition 3) that the system is subject to stabilizing impulses.

If Pk = 0, k = 1, 2, . . . , in (1), then similar to the proof
of Theorem 3, we have the following pth moment practical
exponential stability for the system (1) without impulses.

Theorem 4: System (1) without impulses is the pth moment
practically exponentially stable if there exist constants ω1 > 0,
ω2 > 0, a > 0, b > 0, and c ≥ 0, and a function V ∈
C1,2([t0 − τ,∞) × L2(O)n;R+) such that:

1) ω1‖u‖p ≤ V(t, u(t)) ≤ ω2‖u‖p;
2) LV(t, u(t)) ≤ aV(t, u(t)) + bV(t, u(t)) + c, where

V(t, u(t)) = sups∈[t−τ,t] V(s, u(s)), t ≥ t0, t �= tk,
k ∈ Z+;

3) a + b < 0.
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Define V(t, u(t)) = ‖u(t)‖2 in Theorem 3, then we have the
following theorem.

Theorem 5: Assume that (H1)–(H3) hold. If there exist
γ > 1 and N ∈ Z+ such that 2αβ2 − 1 − [4ρ2/(δN ) +
(ln γ /h)] > 0, δN+k = δk, and

{
γN ∏

1≤j≤N−1

(
δj ∨ 1

γ

)
≤ 1

δN , N ≥ 2

δk ≡ 1
γ
, N = 1

where δk = ‖I+Pk‖2
max > 0 and h = supk∈Z+{tk −tk−1} < ∞,

then (1) is practically exponentially stable in the mean-square
sense.

Remark 5: Notice that if N = 1, then Theorem 5 is consis-
tent with Theorem 2 case (I), which means Theorem 5 contains
some of the results in Theorem 2 case (I). It is also worth-
while pointing out that, when the product of all δk is greater
than 1, Theorem 2 case (II) may work, but Theorem 5 cannot.
However, if the product is less than 1, and there are much
greater impulses, then we can apply Theorem 5 to discuss the
practical stability of systems. Therefore, Theorems 2 and 5
can be used for different systems.

Remark 6: According to Theorems 3 and 4, one may
deduce the exponential stability of the trivial solution to (1) if
c = 0 in Condition 2). Similarly, if f (t, u) and G(t, u) satisfy
f (t, 0) = 0 and G(t, 0) = 0, it then follows from Theorem 5
that the trivial solution is exponentially stable.

Remark 7: Note that if D = 0, then (1) becomes the
impulsive stochastic system with delays. Caraballo et al. [37]
discussed the practical stability of the system with stabiliz-
ing impulses by the Lyapunov method, and Wang et al. [38]
studied the stabilization problem. Letting Pk = 0, then (1) is
the stochastic reaction–diffusion systems with delays, and the
exponential stability has been investigated in [39] and [40].
So Theorems 1–4 include some results in [37]–[40] as special
cases.

Remark 8: Theorems 2 and 5 provide some sufficient con-
ditions for practical exponential stability. These can be viewed
as stabilization results because systems without impulsive
effects may be unstable, while the ones with impulses may
become practically stable, which will be verified in Example 3.

V. APPLICATIONS

In this section, we consider the following IRDSHNNs with
delays:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

du = (A u − Au + Cf (u(t − τ, x)) + J)dt
+ G(u(t − τ, x))dW(t, x), t �= tk

u(tk, x) − u
(
t−k , x

) = Pku
(
t−k , x

)
, k ∈ Z+

u(t, x) |x∈∂O= 0, t ≥ 0
u(θ, x) = φ(θ, x) ∈ Cb

F 0
, −τ ≤ θ ≤ 0, x ∈ O

(67)

where x ∈ R
l, ω ∈ �, u = (u1(t, x, ω), u2

(t, x, ω), . . . , un (t, x, ω))T . A = diag (a1, a2, . . . , an), amin =
min{a1, a2, . . . , an}, ai > 0, i = 1, 2, . . . , n. C = (cij)n×n,
J = (J1, J2, . . . , Jn)

T , Pk = diag(p1k, p2k, . . . , pnk). f (u) =
(f1(u1), f2(u2), . . . , fn(un))

T , G = (Gij)n×m ∈ Mn,m
2 . The phys-

ical meanings of parameters of (67) are similar to those
in [8].

We make the following assumptions for the neural networks.
(A1): There exists α > 0 such that Dij(x) ≥ α, i =

1, 2, . . . , n, j = 1, 2, . . . , l.
(A2): There exists ρ ≥ 0 such that ‖f (u)− f (v)‖∨‖G(u)−

G(v)‖∗ ≤ ρ‖u − v‖.
Corollary 1: Suppose (A1) and (A2) hold. If 0 < δ ≤ 1, and

2αβ2 +2amin −2−[(2ρ2(‖C‖2
F + 1))/δ]−(ln δ/h) > 0, where

δ = supk∈Z+ ‖I + Pk‖2
max, and h = supk∈Z+{tk − tk−1} < ∞,

then (67) is practically exponentially stable in the mean-square
sense.

Proof: From [46], one can derive the existence–uniqueness
of mild solution u(t) to (67). Choose V(t) = ‖u(t)‖2. For
t ∈ (tk−1, tk), from the Itô formula [1], we can deduce that

dEV(t)
dt = 2E(u,A u) − 2E(u, Au) + 2E(u, Cf (u(t − τ, x)))

+ 2E(u, J) + E‖G(u(t − τ, x))‖2∗
� I1 + I2 + I3 + I4 + I5. (68)

Similar to the proof of Theorem 1, we have

I1 ≤ −2αE‖|u‖|2 ≤ −2αβ2EV(t). (69)

Applying the positiveness of ai and the Young inequality
leads to

I2 ≤ −2aminEV(t) (70)

I4 ≤ EV(t) + ‖J‖2. (71)

Combining (H2) with the Young inequality, one may derive
that

I3 ≤ EV(t) + ‖C‖2
F‖f (u(t − τ, x))‖2

≤ EV(t) + 2‖C‖2
Fρ2EV(t − τ)

+ 2‖C‖2
F‖f (0)‖2. (72)

Similarly

I5 ≤ 2ρ2EV(t − τ) + 2‖G(0)‖2∗. (73)

Thus, we can conclude that

dEV(t)
dt ≤ −

(
2αβ2 + 2amin − 2

)
EV(t)

+ 2ρ2
(
‖C‖2

F + 1
)

EV(t) + 2‖C‖2
F‖f (0)‖2

+ ‖J‖2 + 2‖G(0)‖2∗. (74)

Then, the practical exponential stability in the mean-square
sense can be obtained by imitating the proof of Theorem 2.

Similarly, we have the following results.
Corollary 2: Suppose (A1) and (A2) hold. If δ > 1, and

2αβ2 + 2amin − 2 − 2ρ2δ(‖C‖2
F + 1) − (ln δ/h) > 0, where

δ = supk∈Z+ ‖I + Pk‖2
max, and h = infk∈Z+{tk − tk−1} < ∞,

then (67) is practically exponentially stable in the mean-square
sense.

Now, we shall apply Theorem 5 to (67). The following
results can be deduced by (74).

Corollary 3: Assume that (A1) and (A2) hold. If there exist
constant γ > 1, and N ∈ Z+ such that δN+k = δk

2αβ2 + 2amin − 2 − 2ρ2
(
‖C‖2

F+1
)

δN + ln γ

h
> 0
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Fig. 1. Trajectory of u1 and u2 to (75) in Example 1.1.

and
{

γN ∏
1≤j≤N−1

(
δj ∨ 1

γ

)
≤ 1

δN , N ≥ 2

δk ≡ 1
γ
, N = 1

where δk = ‖I+Pk‖2
max > 0, and h = supk∈Z+{tk−tk−1} < ∞,

then (67) is practically exponentially stable in the mean-square
sense.

Remark 9: We mention that, if Pk = 0, then Corollaries 1–3
become the practical exponential stability of stochastic delayed
reaction–diffusion Hopfield neural networks without impulses,
which has been discussed in [47]. So our results include some
of the results in [47].

VI. EXAMPLES

Our results in this article provide some sufficient conditions
for practical exponential stability of (1), and they can be used
in many different systems. In this section, four examples are
given to illustrate the effectiveness of our proposed results.

Example 1: Consider the following IRDSHNNs with
delays:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

du1 = (�u1 − 16.1u1 + 0.5 tanh(u1(t − 1, x))
+ 0.5 tanh(u2(t − 1, x)) + 2)dt
+ tanh(u1(t − 1, x))dW, t �= tk

u1(tk) − u1
(
t−k

) = pu1
(
t−k

)

du2 = (�u2 − 16.1u2 + 0.5 tanh(u1(t − 1, x))
+ 0.5 tanh(u2(t − 1, x)) + 2)dt
+ tanh(u2(t − 1, x))dW, t �= tk

u2(tk) − u2
(
t−k

) = pu2
(
t−k

)

ui|x∈∂O = 0, t ≥ 0, i = 1, 2
(u1(θ), u2(θ))T = (sin(0.2πx)θ, sin(0.2πx))T

θ ∈ [−1, 0], x ∈ O

(75)

where O = (0, 20) and tk = 4k, k ∈ Z+. W =∑∞
n=1(1/n)Bn(t)en(x), where {Bn(t)}∞n=1 are independent stan-

dard Brownian motions, and en(x) = √
(1/20) sin(nπx/20).

Example 1.1: Let p = (1/e) − 1. Then, all assumptions in
Corollary 1 are fulfilled with α = 1, β ≥ 0.05, amin = 16.1,
‖C‖2

F = 1, ρ = 1, h = 4, and δ = (1/e2) < 1. Therefore,
based on Corollary 1, (75) is practically exponentially stable in
the mean-square sense. This can be verified by Figs. 1 and 2.
In order to give a clear description, the trajectory of ‖u‖2 has
been given in Fig. 3.

Example 1.2: Let p = e − 1, then δ = e2 > 1. Based on
Corollary 2, one can derive that (75) is practically exponen-
tially stable. Figs. 4 and 5 show the trajectories of u1, u2, and
‖u‖2, which is consistent with our results.

Fig. 2. Simulation in R
3 of u1 and u2 to (75) in Example 1.1.

Fig. 3. ‖u‖2 of (75) in Example 1.1.

Fig. 4. Trajectory of u1 and u2 to (75) in Example 1.2.

Fig. 5. ‖u‖2 of (75) in Example 1.2.

Example 2: Consider the following 1-D ISRDSs with
delays:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

du = (�u − 5u + 0.5 sin(u(t − 1, x)) + J)dt
+ 0.5 tanh(u(t − 1, x))dW, t �= tk

u(tk) − u
(
t−k

) = pku
(
t−k

)

u|x∈∂O = 0, t ≥ 0
u(θ) = sin(0.4πx)

(
2θ − θ2

)
, θ ∈ [ − 1, 0], x ∈ O

(76)

where O and W are the same as those in Example 1.
Example 2.1: Let tk = k, k ∈ Z+, p3k−1 = (1/

√
0.35) − 1,

p3k−2 = (1/
√

0.83) − 1, and p3k = (1/
√

6) − 1. Then, we
choose V = ‖u(t)‖2, N = 3, γ = 1.2, σ1 = 0.35, σ2 = 0.83,
and σ3 = 6. We notice that the assumptions in Corollary 3 can
be perfectly satisfied. So if J = 1, one may obtain the practi-
cal exponential stability of (76), which is shown in Fig. 6(a).
Also, it follows from Corollary 3 that (76) with J = 0 is expo-
nentially stable, as shown in Fig. 6(b). Moreover, Fig. 7 (red
and black) shows the trajectories of ‖u(t)‖2.

Example 2.2: Let tk = 2k, k ∈ Z+, and pk = (1/
√

8) − 1.
If V = ‖u(t)‖2, N = 1, and σk = γ = 8, then it can
be deduced from Corollary 3 that (76) is practically expo-
nentially stable when J = 1, and exponentially stable when
J = 0. To verify our results, the simulation results are shown
in Fig. 6(c) and (d), respectively. One can also observe the
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(a) (b)

(c) (d)

Fig. 6. (a) Trajectory of system (76) in Example 2.1 with J = 1.
(b) Trajectory of system (76) in Example 2.1 with J = 0. (c) Trajectory
of system (76) in Example 2.2 with J = 1. (d) Trajectory of system (76) in
Example 2.2 with J = 0.

Fig. 7. ‖u‖2 of (76) in Example 2.

practical stability of (76) from the simulation of ‖u(t)‖2 in
Fig. 7 (blue and magenta).

Example 3: Consider the following ISRDSs with delays:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

du1 = (�u1 + (0.05 + 0.7 cos(0.5t))u1 − 0.6u2
+ 0.01 cos(0.5t)u1(t − 1, x))dt
+ tanh(u1(t − 1, x))dW, t �= tk

u1(tk) − u1
(
t−k

) = pku1
(
t−k

)

du2 = (�u2 + 0.6u1 + (0.05 + 0.7 cos(0.5t))u2
− 0.01u1(t − 1, x) − 0.01u2(t − 1, x))dt
+ tanh(u2(t − 1, x))dW, t �= tk

u2(tk) − u2
(
t−k

) = pku2
(
t−k

)

ui|x∈∂O = 0, t ≥ 0, i = 1, 2
(u1(θ), u2(θ))T = (sin(0.2πx)θ, sin(0.2πx))T

θ ∈ [−1, 0], x ∈ O

(77)

where tk = 0.01k, k ∈ Z+. O and W are the same as those in
Example 1.

Example 3.1: Let pk = 0, then (77) becomes the stochastic
reaction–diffusion systems without impulses. We cannot derive
the practical stability of (77) from Theorem 1 or Theorem 4.
But from Fig. 8, we can infer that the solution to (77) would
be divergent with the increasing of time and thus it is not
practically stable.

Example 3.2: If pk = e−1 −1, then according to Theorem 2,
one may observe that (77) can become exponentially stable
with the impulses. The state trajectory is portrayed in Fig. 9,
from which we can also obtain the stability.

Example 3.3: Let p2k = (1/
√

14) − 1 and p2k−1 = √
2 − 1.

Then, one may choose V = ‖u(t)‖2, N = 2, γ = 1.2, σ1 =
0.5, and σ2 = 14. Using Theorem 5, it can be derived that the
impulsive control can exponentially stabilize the system (77),
which is shown in Fig. 10.

Fig. 8. Trajectory of u1 and u2 to (77) in Example 3.1.

Fig. 9. Trajectory of u1 and u2 to (77) in Example 3.2.

Fig. 10. Trajectory of u1 and u2 to (77) in Example 3.3.

Fig. 11. ‖u‖2 of (77) in Example 3.

Remark 10: Fig. 11 illustrates the trajectories of ‖u‖2 in
Examples 3.1–3.3. It then can be obtained that the impulses
given by Examples 3.2 and 3.3 can stabilize the system.

Example 4: Consider the following 1-D systems:

⎧
⎨

⎩

du = [D�u − u(t − τ, x)]dt + tanh(u(t − τ, x))dW
u|x∈∂O = 0, t ≥ 0
u(θ) = sin(0.4πx)

(
2θ − θ2

)
, θ ∈ [ − τ, 0], x ∈ O

(78)

where O and W are the same as those in Example 1.
Example 4.1: Let D = 35, then Fig. 12 shows the trajecto-

ries of ‖u(t)‖2 with τ = 0, τ = 3, and τ = 20. From Fig. 12,
we obtain that the convergence rate of (78) tends to decrease
with the increase of time delay. It then follows that time delays
may affect the convergence rate of systems.

Example 4.2: Let τ = 3, then the simulation results of
‖u(t)‖2 with D = 10, D = 20, and D = 35 are illustrated in
Fig. 13, respectively, which demonstrate the effect of diffusion
terms. It is easily seen that (78) with D = 10 is not practically
stable, but the one with D = 35 is stable.

Remark 11: One can observe from Example 4 that the
time delays and diffusion terms may influence the stability
of systems. Therefore, we cannot ignore the effect of them
when discussing the dynamical behavior of systems.
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Fig. 12. ‖u‖2 of (78) in Example 4.1.

Fig. 13. ‖u‖2 of (78) in Example 4.2.

VII. CONCLUSION

In this article, a direct approach and the Lyapunov method
are developed to study the practical exponential stability of
ISRDSs with delays. Those two ways can be used for the
systems with different impulses, and are also applicable when
discussing the exponential stability under certain conditions.
The proposed results are applied to the IRDSHNNs with
delays to obtain some algebraic criteria. Numerical examples
are given to demonstrate the effectiveness of our theoretical
results, which also illustrate the effects of diffusion terms and
time delays. Notice that the concept of practical stability is
more suitable for many systems, such as the delayed logistic
equations and the switched delayed systems. It is interesting
to investigate the practical stability of these systems in the
future. Another topic is to extend our results to systems with
more complex impulses, such as state-dependent impulses and
delayed impulses.
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