24 research outputs found

    On the Combinatorics of Locally Repairable Codes via Matroid Theory

    Full text link
    This paper provides a link between matroid theory and locally repairable codes (LRCs) that are either linear or more generally almost affine. Using this link, new results on both LRCs and matroid theory are derived. The parameters (n,k,d,r,δ)(n,k,d,r,\delta) of LRCs are generalized to matroids, and the matroid analogue of the generalized Singleton bound in [P. Gopalan et al., "On the locality of codeword symbols," IEEE Trans. Inf. Theory] for linear LRCs is given for matroids. It is shown that the given bound is not tight for certain classes of parameters, implying a nonexistence result for the corresponding locally repairable almost affine codes, that are coined perfect in this paper. Constructions of classes of matroids with a large span of the parameters (n,k,d,r,δ)(n,k,d,r,\delta) and the corresponding local repair sets are given. Using these matroid constructions, new LRCs are constructed with prescribed parameters. The existence results on linear LRCs and the nonexistence results on almost affine LRCs given in this paper strengthen the nonexistence and existence results on perfect linear LRCs given in [W. Song et al., "Optimal locally repairable codes," IEEE J. Sel. Areas Comm.].Comment: 48 pages. Submitted for publication. In this version: The text has been edited to improve the readability. Parameter d for matroids is now defined by the use of the rank function instead of the dual matroid. Typos are corrected. Section III is divided into two parts, and some numberings of theorems etc. have been change

    Powerful sets: a generalisation of binary matroids

    Full text link
    A set S{0,1}ES\subseteq\{0,1\}^E of binary vectors, with positions indexed by EE, is said to be a \textit{powerful code} if, for all XEX\subseteq E, the number of vectors in SS that are zero in the positions indexed by XX is a power of 2. By treating binary vectors as characteristic vectors of subsets of EE, we say that a set S2ES\subseteq2^E of subsets of EE is a \textit{powerful set} if the set of characteristic vectors of sets in SS is a powerful code. Powerful sets (codes) include cocircuit spaces of binary matroids (equivalently, linear codes over F2\mathbb{F}_2), but much more besides. Our motivation is that, to each powerful set, there is an associated nonnegative-integer-valued rank function (by a construction of Farr), although it does not in general satisfy all the matroid rank axioms. In this paper we investigate the combinatorial properties of powerful sets. We prove fundamental results on special elements (loops, coloops, frames, near-frames, and stars), their associated types of single-element extensions, various ways of combining powerful sets to get new ones, and constructions of nonlinear powerful sets. We show that every powerful set is determined by its clutter of minimal nonzero members. Finally, we show that the number of powerful sets is doubly exponential, and hence that almost all powerful sets are nonlinear.Comment: 19 pages. This work was presented at the 40th Australasian Conference on Combinatorial Mathematics and Combinatorial Computing (40ACCMCC), University of Newcastle, Australia, Dec. 201

    Optimal Binary Locally Repairable Codes via Anticodes

    Full text link
    This paper presents a construction for several families of optimal binary locally repairable codes (LRCs) with small locality (2 and 3). This construction is based on various anticodes. It provides binary LRCs which attain the Cadambe-Mazumdar bound. Moreover, most of these codes are optimal with respect to the Griesmer bound

    Bounds on the minimum distance of locally recoverable codes

    Full text link
    We consider locally recoverable codes (LRCs) and aim to determine the smallest possible length n=nq(k,d,r)n=n_q(k,d,r) of a linear [n,k,d]q[n,k,d]_q-code with locality rr. For k7k\le 7 we exactly determine all values of n2(k,d,2)n_2(k,d,2) and for k6k\le 6 we exactly determine all values of n2(k,d,1)n_2(k,d,1). For the ternary field we also state a few numerical results. As a general result we prove that nq(k,d,r)n_q(k,d,r) equals the Griesmer bound if the minimum Hamming distance dd is sufficiently large and all other parameters are fixed.Comment: 23 pages, 3 table

    Bounds on the minimum distance of locally recoverable codes

    Get PDF

    Matroidal Entropy Functions: Constructions, Characterizations and Representations

    Full text link
    In this paper, we characterize matroidal entropy functions, i.e., entropy functions in the form h=logvrM\mathbf{h} = \log v \cdot \mathbf{r}_M , where v2v \ge 2 is an integer and rM\mathbf{r}_M is the rank function of a matroid MM. By constructing the variable strength arrays of some matroid operations, we characterized matroidal entropy functions induced by regular matroids and some matroids with the same p-characteristic set as uniform matroid U2,4U_{2,4}.Comment: 23 pages, 5 figures, submitted to IEEE Transactions on Information Theor

    Increasing Availability in Distributed Storage Systems via Clustering

    Full text link
    We introduce the Fixed Cluster Repair System (FCRS) as a novel architecture for Distributed Storage Systems (DSS), achieving a small repair bandwidth while guaranteeing a high availability. Specifically we partition the set of servers in a DSS into ss clusters and allow a failed server to choose any cluster other than its own as its repair group. Thereby, we guarantee an availability of s1s-1. We characterize the repair bandwidth vs. storage trade-off for the FCRS under functional repair and show that the minimum repair bandwidth can be improved by an asymptotic multiplicative factor of 2/32/3 compared to the state of the art coding techniques that guarantee the same availability. We further introduce Cubic Codes designed to minimize the repair bandwidth of the FCRS under the exact repair model. We prove an asymptotic multiplicative improvement of 0.790.79 in the minimum repair bandwidth compared to the existing exact repair coding techniques that achieve the same availability. We show that Cubic Codes are information-theoretically optimal for the FCRS with 22 and 33 complete clusters. Furthermore, under the repair-by-transfer model, Cubic Codes are optimal irrespective of the number of clusters
    corecore