1,072 research outputs found

    Small Strong Epsilon Nets

    Full text link
    Let P be a set of n points in Rd\mathbb{R}^d. A point x is said to be a centerpoint of P if x is contained in every convex object that contains more than dnd+1dn\over d+1 points of P. We call a point x a strong centerpoint for a family of objects C\mathcal{C} if xPx \in P is contained in every object CCC \in \mathcal{C} that contains more than a constant fraction of points of P. A strong centerpoint does not exist even for halfspaces in R2\mathbb{R}^2. We prove that a strong centerpoint exists for axis-parallel boxes in Rd\mathbb{R}^d and give exact bounds. We then extend this to small strong ϵ\epsilon-nets in the plane and prove upper and lower bounds for ϵiS\epsilon_i^\mathcal{S} where S\mathcal{S} is the family of axis-parallel rectangles, halfspaces and disks. Here ϵiS\epsilon_i^\mathcal{S} represents the smallest real number in [0,1][0,1] such that there exists an ϵiS\epsilon_i^\mathcal{S}-net of size i with respect to S\mathcal{S}.Comment: 19 pages, 12 figure

    On interference among moving sensors and related problems

    Full text link
    We show that for any set of nn points moving along "simple" trajectories (i.e., each coordinate is described with a polynomial of bounded degree) in d\Re^d and any parameter 2kn2 \le k \le n, one can select a fixed non-empty subset of the points of size O(klogk)O(k \log k), such that the Voronoi diagram of this subset is "balanced" at any given time (i.e., it contains O(n/k)O(n/k) points per cell). We also show that the bound O(klogk)O(k \log k) is near optimal even for the one dimensional case in which points move linearly in time. As applications, we show that one can assign communication radii to the sensors of a network of nn moving sensors so that at any given time their interference is O(nlogn)O(\sqrt{n\log n}). We also show some results in kinetic approximate range counting and kinetic discrepancy. In order to obtain these results, we extend well-known results from ε\varepsilon-net theory to kinetic environments

    Selection Lemmas for various geometric objects

    Full text link
    Selection lemmas are classical results in discrete geometry that have been well studied and have applications in many geometric problems like weak epsilon nets and slimming Delaunay triangulations. Selection lemma type results typically show that there exists a point that is contained in many objects that are induced (spanned) by an underlying point set. In the first selection lemma, we consider the set of all the objects induced (spanned) by a point set PP. This question has been widely explored for simplices in Rd\mathbb{R}^d, with tight bounds in R2\mathbb{R}^2. In our paper, we prove first selection lemma for other classes of geometric objects. We also consider the strong variant of this problem where we add the constraint that the piercing point comes from PP. We prove an exact result on the strong and the weak variant of the first selection lemma for axis-parallel rectangles, special subclasses of axis-parallel rectangles like quadrants and slabs, disks (for centrally symmetric point sets). We also show non-trivial bounds on the first selection lemma for axis-parallel boxes and hyperspheres in Rd\mathbb{R}^d. In the second selection lemma, we consider an arbitrary mm sized subset of the set of all objects induced by PP. We study this problem for axis-parallel rectangles and show that there exists an point in the plane that is contained in m324n4\frac{m^3}{24n^4} rectangles. This is an improvement over the previous bound by Smorodinsky and Sharir when mm is almost quadratic

    Polychromatic Coloring for Half-Planes

    Full text link
    We prove that for every integer kk, every finite set of points in the plane can be kk-colored so that every half-plane that contains at least 2k12k-1 points, also contains at least one point from every color class. We also show that the bound 2k12k-1 is best possible. This improves the best previously known lower and upper bounds of 43k\frac{4}{3}k and 4k14k-1 respectively. We also show that every finite set of half-planes can be kk colored so that if a point pp belongs to a subset HpH_p of at least 3k23k-2 of the half-planes then HpH_p contains a half-plane from every color class. This improves the best previously known upper bound of 8k38k-3. Another corollary of our first result is a new proof of the existence of small size \eps-nets for points in the plane with respect to half-planes.Comment: 11 pages, 5 figure
    corecore