5 research outputs found

    Lossless Linear Analog Compression

    Get PDF
    We establish the fundamental limits of lossless linear analog compression by considering the recovery of random vectors x∈Rm{\boldsymbol{\mathsf{x}}}\in{\mathbb R}^m from the noiseless linear measurements y=Ax{\boldsymbol{\mathsf{y}}}=\boldsymbol{A}{\boldsymbol{\mathsf{x}}} with measurement matrix A∈Rn×m\boldsymbol{A}\in{\mathbb R}^{n\times m}. Specifically, for a random vector x∈Rm{\boldsymbol{\mathsf{x}}}\in{\mathbb R}^m of arbitrary distribution we show that x{\boldsymbol{\mathsf{x}}} can be recovered with zero error probability from n>inf⁥dimâĄâ€ŸMB(U)n>\inf\underline{\operatorname{dim}}_\mathrm{MB}(U) linear measurements, where dimâĄâ€ŸMB(⋅)\underline{\operatorname{dim}}_\mathrm{MB}(\cdot) denotes the lower modified Minkowski dimension and the infimum is over all sets U⊆RmU\subseteq{\mathbb R}^{m} with P[x∈U]=1\mathbb{P}[{\boldsymbol{\mathsf{x}}}\in U]=1. This achievability statement holds for Lebesgue almost all measurement matrices A\boldsymbol{A}. We then show that ss-rectifiable random vectors---a stochastic generalization of ss-sparse vectors---can be recovered with zero error probability from n>sn>s linear measurements. From classical compressed sensing theory we would expect n≄sn\geq s to be necessary for successful recovery of x{\boldsymbol{\mathsf{x}}}. Surprisingly, certain classes of ss-rectifiable random vectors can be recovered from fewer than ss measurements. Imposing an additional regularity condition on the distribution of ss-rectifiable random vectors x{\boldsymbol{\mathsf{x}}}, we do get the expected converse result of ss measurements being necessary. The resulting class of random vectors appears to be new and will be referred to as ss-analytic random vectors

    New Uniform Bounds for Almost Lossless Analog Compression

    Full text link
    Wu and Verd\'u developed a theory of almost lossless analog compression, where one imposes various regularity conditions on the compressor and the decompressor with the input signal being modelled by a (typically infinite-entropy) stationary stochastic process. In this work we consider all stationary stochastic processes with trajectories in a prescribed set S⊂[0,1]Z\mathcal{S} \subset [0,1]^\mathbb{Z} of (bi)infinite sequences and find uniform lower and upper bounds for certain compression rates in terms of metric mean dimension and mean box dimension. An essential tool is the recent Lindenstrauss-Tsukamoto variational principle expressing metric mean dimension in terms of rate-distortion functions.Comment: This paper is going to be presented at 2019 IEEE International Symposium on Information Theory. It is a short version of arXiv:1812.0045

    Polarization of the Renyi Information Dimension with Applications to Compressed Sensing

    Full text link
    In this paper, we show that the Hadamard matrix acts as an extractor over the reals of the Renyi information dimension (RID), in an analogous way to how it acts as an extractor of the discrete entropy over finite fields. More precisely, we prove that the RID of an i.i.d. sequence of mixture random variables polarizes to the extremal values of 0 and 1 (corresponding to discrete and continuous distributions) when transformed by a Hadamard matrix. Further, we prove that the polarization pattern of the RID admits a closed form expression and follows exactly the Binary Erasure Channel (BEC) polarization pattern in the discrete setting. We also extend the results from the single- to the multi-terminal setting, obtaining a Slepian-Wolf counterpart of the RID polarization. We discuss applications of the RID polarization to Compressed Sensing of i.i.d. sources. In particular, we use the RID polarization to construct a family of deterministic ±1\pm 1-valued sensing matrices for Compressed Sensing. We run numerical simulations to compare the performance of the resulting matrices with that of random Gaussian and random Hadamard matrices. The results indicate that the proposed matrices afford competitive performances while being explicitly constructed.Comment: 12 pages, 2 figure

    Lossless Analog Compression

    Full text link
    We establish the fundamental limits of lossless analog compression by considering the recovery of arbitrary m-dimensional real random vectors x from the noiseless linear measurements y=Ax with n x m measurement matrix A. Our theory is inspired by the groundbreaking work of Wu and Verdu (2010) on almost lossless analog compression, but applies to the nonasymptotic, i.e., fixed-m case, and considers zero error probability. Specifically, our achievability result states that, for almost all A, the random vector x can be recovered with zero error probability provided that n > K(x), where K(x) is given by the infimum of the lower modified Minkowski dimension over all support sets U of x. We then particularize this achievability result to the class of s-rectifiable random vectors as introduced in Koliander et al. (2016); these are random vectors of absolutely continuous distribution---with respect to the s-dimensional Hausdorff measure---supported on countable unions of s-dimensional differentiable submanifolds of the m-dimensional real coordinate space. Countable unions of differentiable submanifolds include essentially all signal models used in the compressed sensing literature. Specifically, we prove that, for almost all A, s-rectifiable random vectors x can be recovered with zero error probability from n>s linear measurements. This threshold is, however, found not to be tight as exemplified by the construction of an s-rectifiable random vector that can be recovered with zero error probability from n<s linear measurements. This leads us to the introduction of the new class of s-analytic random vectors, which admit a strong converse in the sense of n greater than or equal to s being necessary for recovery with probability of error smaller than one. The central conceptual tools in the development of our theory are geometric measure theory and the theory of real analytic functions

    Achieving the Fundamental Limit of Lossless Analog Compression via Polarization

    Full text link
    In this paper, we study the lossless analog compression for i.i.d. nonsingular signals via the polarization-based framework. We prove that for nonsingular source, the error probability of maximum a posteriori (MAP) estimation polarizes under the Hadamard transform, which extends the polarization phenomenon to analog domain. Building on this insight, we propose partial Hadamard compression and develop the corresponding analog successive cancellation (SC) decoder. The proposed scheme consists of deterministic measurement matrices and non-iterative reconstruction algorithm, providing benefits in both space and computational complexity. Using the polarization of error probability, we prove that our approach achieves the information-theoretical limit for lossless analog compression developed by Wu and Verdu.Comment: 48 pages, 5 figures. This work was presented in part at the 2023 IEEE Global Communications Conferenc
    corecore