2 research outputs found

    Integrated design of hybrid interstory-interbuilding multi-actuation schemes for vibration control of adjacent buildings under seismic excitations

    Get PDF
    The design of vibration control systems for the seismic protection of closely adjacent buildings is a complex and challenging problem. In this paper, we consider distributed multi-actuation schemes that combine interbuilding linking elements and interstory actuation devices. Using an advanced static output-feedback H∞ approach, active and passive vibration control systems are designed for a multi-story two-building structure equipped with a selected set of linked and unlinked actuation schemes. To validate the effectiveness of the obtained controllers, the corresponding frequency responses are investigated and a proper set of numerical simulations is conducted using the full scale North–South El Centro 1940 seismic record as ground acceleration disturbance. The observed results indicate that using combined interstory-interbuilding multi-actuation schemes is an effective means of mitigating the vibrational response of the individual buildings and, simultaneously, reducing the risk of interbuilding pounding. These results also point out that passive control systems with high-performance characteristics can be designed using damping elements.Peer ReviewedPostprint (published version

    Allocation of actuators and sensors for coupled-adjacent-building vibration attenuation

    No full text
    An actuator and sensor allocation approach is proposed for the design of coupled-adjacent-building vibration suppression under seismic excitation. This paper first establishes a full-order model of adjacent buildings with the location information of actuators and sensors. Then, the order of the model is reduced via modal cost analysis, by retaining the modes contributing the most. In view of the fact that the output powers of the actuators are limited, this paper brings forward a mixed Hâ\u88\u9e/GH2 control. By considering that not all the states of the system can be measured by the sensors, a dynamic output feedback controller is designed. The genetic algorithm is employed to obtain the locations of the actuators and sensors, as well as the corresponding controller. With the proposed approach, the allocation problem is solved, and the vibration of coupled adjacent buildings is attenuated at a sufficiently low level with constrained acting forces. Simulations demonstrate the effectiveness and robustness of the proposed approach in attenuating building vibration under earthquake excitation. © 1982-2012 IEEE
    corecore