10,495 research outputs found

    Objectives, stimulus and feedback in signal control of road traffic

    Get PDF
    This article identifies the prospective role of a range of intelligent transport systems technologies for the signal control of road traffic. We discuss signal control within the context of traffic management and control in urban road networks and then present a control-theoretic formulation for it that distinguishes the various roles of detector data, objectives of optimization, and control feedback. By reference to this, we discuss the importance of different kinds of variability in traffic flows and review the state of knowledge in respect of control in the presence of different combinations of them. In light of this formulation and review, we identify a range of important possibilities for contributions to traffic management and control through traffic measurement and detection technology, and contemporary flexible optimization techniques that use various kinds of automated learning

    Rebalancing shared mobility systems by user incentive scheme via reinforcement learning

    Get PDF
    Shared mobility systems regularly suffer from an imbalance of vehicle supply within the system, leading to users being unable to receive service. If such imbalance problems are not mitigated some users will not be serviced. There is an increasing interest in the use of reinforcement learning (RL) techniques for improving the resource supply balance and service level of systems. The goal of these techniques is to produce an effective user incentivization policy scheme to encourage users of a shared mobility system to slightly alter their travel behavior in exchange for a small monetary incentive. These slight changes in user behavior are intended to over time increase the service level of the shared mobility system and improve user experience. In this thesis, two important questions are explored: (1) What state-action representation should be used to produce an effective user incentive scheme for a shared mobility system? (2) How effective are reinforcement learning-based solutions on the rebalancing problem under varying levels of resource supply, user demand, and budget? Our extensive empirical results based on data-driven simulation show that: 1. A state space with predicted user behavior coupled with a simple action mechanism produces an effective incentive scheme under varying environment scenarios. 2. The reinforcement learning-based incentive mechanisms perform at varying degrees of effectiveness under different environmental scenarios in terms of service level

    Learning and Management for Internet-of-Things: Accounting for Adaptivity and Scalability

    Get PDF
    Internet-of-Things (IoT) envisions an intelligent infrastructure of networked smart devices offering task-specific monitoring and control services. The unique features of IoT include extreme heterogeneity, massive number of devices, and unpredictable dynamics partially due to human interaction. These call for foundational innovations in network design and management. Ideally, it should allow efficient adaptation to changing environments, and low-cost implementation scalable to massive number of devices, subject to stringent latency constraints. To this end, the overarching goal of this paper is to outline a unified framework for online learning and management policies in IoT through joint advances in communication, networking, learning, and optimization. From the network architecture vantage point, the unified framework leverages a promising fog architecture that enables smart devices to have proximity access to cloud functionalities at the network edge, along the cloud-to-things continuum. From the algorithmic perspective, key innovations target online approaches adaptive to different degrees of nonstationarity in IoT dynamics, and their scalable model-free implementation under limited feedback that motivates blind or bandit approaches. The proposed framework aspires to offer a stepping stone that leads to systematic designs and analysis of task-specific learning and management schemes for IoT, along with a host of new research directions to build on.Comment: Submitted on June 15 to Proceeding of IEEE Special Issue on Adaptive and Scalable Communication Network

    Reinforcement Learning

    Get PDF
    Brains rule the world, and brain-like computation is increasingly used in computers and electronic devices. Brain-like computation is about processing and interpreting data or directly putting forward and performing actions. Learning is a very important aspect. This book is on reinforcement learning which involves performing actions to achieve a goal. The first 11 chapters of this book describe and extend the scope of reinforcement learning. The remaining 11 chapters show that there is already wide usage in numerous fields. Reinforcement learning can tackle control tasks that are too complex for traditional, hand-designed, non-learning controllers. As learning computers can deal with technical complexities, the tasks of human operators remain to specify goals on increasingly higher levels. This book shows that reinforcement learning is a very dynamic area in terms of theory and applications and it shall stimulate and encourage new research in this field
    • …
    corecore