301 research outputs found

    Transaction Fraud Detection via Spatial-Temporal-Aware Graph Transformer

    Full text link
    How to obtain informative representations of transactions and then perform the identification of fraudulent transactions is a crucial part of ensuring financial security. Recent studies apply Graph Neural Networks (GNNs) to the transaction fraud detection problem. Nevertheless, they encounter challenges in effectively learning spatial-temporal information due to structural limitations. Moreover, few prior GNN-based detectors have recognized the significance of incorporating global information, which encompasses similar behavioral patterns and offers valuable insights for discriminative representation learning. Therefore, we propose a novel heterogeneous graph neural network called Spatial-Temporal-Aware Graph Transformer (STA-GT) for transaction fraud detection problems. Specifically, we design a temporal encoding strategy to capture temporal dependencies and incorporate it into the graph neural network framework, enhancing spatial-temporal information modeling and improving expressive ability. Furthermore, we introduce a transformer module to learn local and global information. Pairwise node-node interactions overcome the limitation of the GNN structure and build up the interactions with the target node and long-distance ones. Experimental results on two financial datasets compared to general GNN models and GNN-based fraud detectors demonstrate that our proposed method STA-GT is effective on the transaction fraud detection task

    Heterogeneous Graph Neural Networks for Fraud Detection and Explanation in Supply Chain Finance

    Get PDF
    It is a critical mission for financial service providers to discover fraudulent borrowers in a supply chain. The borrowers’ transactions in anongoing business are inspected to support the providers’ decision on whether to lend the money. Considering multiple participants in a supply chain business, the borrowers may use sophisticated tricks to cheat, making fraud detection challenging. In this work, we propose a multitask learning framework, MultiFraud, for complex fraud detection with reasonable explanation. The heterogeneous information from multi-view around the entities is leveraged in the detection framework based on heterogeneous graph neural networks. MultiFraud enables multiple domains to share embeddings and enhance modeling capabilities for fraud detection. The developed explainer provides comprehensive explanations across multiple graphs. Experimental results on five datasets demonstrate the framework’s effectiveness in fraud detection and explanation across domains

    xFraud: Explainable Fraud Transaction Detection

    Full text link
    At online retail platforms, it is crucial to actively detect the risks of transactions to improve customer experience and minimize financial loss. In this work, we propose xFraud, an explainable fraud transaction prediction framework which is mainly composed of a detector and an explainer. The xFraud detector can effectively and efficiently predict the legitimacy of incoming transactions. Specifically, it utilizes a heterogeneous graph neural network to learn expressive representations from the informative heterogeneously typed entities in the transaction logs. The explainer in xFraud can generate meaningful and human-understandable explanations from graphs to facilitate further processes in the business unit. In our experiments with xFraud on real transaction networks with up to 1.1 billion nodes and 3.7 billion edges, xFraud is able to outperform various baseline models in many evaluation metrics while remaining scalable in distributed settings. In addition, we show that xFraud explainer can generate reasonable explanations to significantly assist the business analysis via both quantitative and qualitative evaluations.Comment: This is the extended version of a full paper to appear in PVLDB 15 (3) (VLDB 2022

    Graph Anomaly Detection at Group Level: A Topology Pattern Enhanced Unsupervised Approach

    Full text link
    Graph anomaly detection (GAD) has achieved success and has been widely applied in various domains, such as fraud detection, cybersecurity, finance security, and biochemistry. However, existing graph anomaly detection algorithms focus on distinguishing individual entities (nodes or graphs) and overlook the possibility of anomalous groups within the graph. To address this limitation, this paper introduces a novel unsupervised framework for a new task called Group-level Graph Anomaly Detection (Gr-GAD). The proposed framework first employs a variant of Graph AutoEncoder (GAE) to locate anchor nodes that belong to potential anomaly groups by capturing long-range inconsistencies. Subsequently, group sampling is employed to sample candidate groups, which are then fed into the proposed Topology Pattern-based Graph Contrastive Learning (TPGCL) method. TPGCL utilizes the topology patterns of groups as clues to generate embeddings for each candidate group and thus distinct anomaly groups. The experimental results on both real-world and synthetic datasets demonstrate that the proposed framework shows superior performance in identifying and localizing anomaly groups, highlighting it as a promising solution for Gr-GAD. Datasets and codes of the proposed framework are at the github repository https://anonymous.4open.science/r/Topology-Pattern-Enhanced-Unsupervised-Group-level-Graph-Anomaly-Detection

    Enhancing Graph Neural Network-based Fraud Detectors against Camouflaged Fraudsters

    Full text link
    Graph Neural Networks (GNNs) have been widely applied to fraud detection problems in recent years, revealing the suspiciousness of nodes by aggregating their neighborhood information via different relations. However, few prior works have noticed the camouflage behavior of fraudsters, which could hamper the performance of GNN-based fraud detectors during the aggregation process. In this paper, we introduce two types of camouflages based on recent empirical studies, i.e., the feature camouflage and the relation camouflage. Existing GNNs have not addressed these two camouflages, which results in their poor performance in fraud detection problems. Alternatively, we propose a new model named CAmouflage-REsistant GNN (CARE-GNN), to enhance the GNN aggregation process with three unique modules against camouflages. Concretely, we first devise a label-aware similarity measure to find informative neighboring nodes. Then, we leverage reinforcement learning (RL) to find the optimal amounts of neighbors to be selected. Finally, the selected neighbors across different relations are aggregated together. Comprehensive experiments on two real-world fraud datasets demonstrate the effectiveness of the RL algorithm. The proposed CARE-GNN also outperforms state-of-the-art GNNs and GNN-based fraud detectors. We integrate all GNN-based fraud detectors as an opensource toolbox: https://github.com/safe-graph/DGFraud. The CARE-GNN code and datasets are available at https://github.com/YingtongDou/CARE-GNN.Comment: Accepted by CIKM 202

    Effective Multi-Graph Neural Networks for Illicit Account Detection on Cryptocurrency Transaction Networks

    Full text link
    We study illicit account detection on transaction networks of cryptocurrencies that are increasi_testngly important in online financial markets. The surge of illicit activities on cryptocurrencies has resulted in billions of losses from normal users. Existing solutions either rely on tedious feature engineering to get handcrafted features, or are inadequate to fully utilize the rich semantics of cryptocurrency transaction data, and consequently, yield sub-optimal performance. In this paper, we formulate the illicit account detection problem as a classification task over directed multigraphs with edge attributes, and present DIAM, a novel multi-graph neural network model to effectively detect illicit accounts on large transaction networks. First, DIAM includes an Edge2Seq module that automatically learns effective node representations preserving intrinsic transaction patterns of parallel edges, by considering both edge attributes and directed edge sequence dependencies. Then utilizing the multigraph topology, DIAM employs a new Multigraph Discrepancy (MGD) module with a well-designed message passing mechanism to capture the discrepant features between normal and illicit nodes, supported by an attention mechanism. Assembling all techniques, DIAM is trained in an end-to-end manner. Extensive experiments, comparing against 14 existing solutions on 4 large cryptocurrency datasets of Bitcoin and Ethereum, demonstrate that DIAM consistently achieves the best performance to accurately detect illicit accounts, while being efficient. For instance, on a Bitcoin dataset with 20 million nodes and 203 million edges, DIAM achieves F1 score 96.55%, significantly higher than the F1 score 83.92% of the best competitor

    DPPIN: A Biological Dataset of Dynamic Protein-Protein Interaction Networks

    Full text link
    Nowadays, many network representation learning algorithms and downstream network mining tasks have already paid attention to dynamic networks or temporal networks, which are more suitable for real-world complex scenarios by modeling evolving patterns and temporal dependencies between node interactions. Moreover, representing and mining temporal networks have a wide range of applications, such as fraud detection, social network analysis, and drug discovery. To contribute to the network representation learning and network mining research community, in this paper, we generate a new biological dataset of dynamic protein-protein interaction networks (i.e., DPPIN), which consists of twelve dynamic protein-level interaction networks of yeast cells at different scales. We first introduce the generation process of DPPIN. To demonstrate the value of our published dataset DPPIN, we then list the potential applications that would be benefited. Furthermore, we design dynamic local clustering, dynamic spectral clustering, dynamic subgraph matching, dynamic node classification, and dynamic graph classification experiments, where DPPIN indicates future research opportunities for some tasks by presenting challenges on state-of-the-art baseline algorithms. Finally, we identify future directions for improving this dataset utility and welcome inputs from the community. All resources of this work are deployed and publicly available at https://github.com/DongqiFu/DPPIN
    • …
    corecore