2,606 research outputs found

    Time-varying Autoregressive Modeling of Nonstationary Signals

    Get PDF
    Nonstationary signal modeling is a research topic of practical interest. In this thesis, we adopt a time-varying (TV) autoregressive (AR) model using the basis function (BF) parameter estimation method for nonstationary process identification and instantaneous frequency (IF) estimation. The current TVAR model in direct form (DF) with the blockwise least-squares and recursive weighted-least-squares BF methods perform equivalently well in signal modeling, but the large estimation error may cause temporary instabilities of the estimated model. To achieve convenient model stability monitoring and pole tracking, the TVAR model in cascade form (CF) was proposed through the parameterization in terms of TV poles (represented by second order section coefficients, Cartesian coordinates, Polar coordinates), where the time variation of each pole parameter is assumed to be the linear combination of BFs. The nonlinear system equations for the TVAR model in CF are solved iteratively using the Gauss-Newton algorithm. Using the CF, the model stability is easily controlled by constraining the estimated TV poles within the unit circle. The CF model shows similar performance trends to the DF model using the recursive BF method, and the TV pole representation in Cartesian coordinates outperforms all other representations. The individual frequency variation can be finely tracked using the CF model, when several frequency components are present in the signal. Simulations were carried on synthetic sinusoidal signals with different frequency variations for IF estimation. For the TVAR model in DF (blockwise), the basis dimension (BD) is an important factor on frequency estimation accuracy. For the TVAR model in DF (recursive) and CF (Cartesian), the influences of BD are negligible. The additive white noise in the observed signal degrades the estimation performance, and the the noise effects can be reduce by using higher model order. Experiments were carried on the real electromyography (EMG) data for frequency estimation in the analysis of muscle fatigue. The TVAR modeling methods show equivalent performance to the conventional Fourier transform method

    Sensory information processing (1 January 1976 - 30 June 1976)

    Get PDF
    technical reportThe removal of the effects of atmospheric turbulence from optical images is a significant problem of long standing. Recent investigations by Knox and Thompson have led to the development of a restoration procedure which shows considerable promise. This procedure has not been successfully applied to real data as yet, however, nor has it been sufficiently well analyzed and simulated to provide a thorough quantitative understanding of their properties. Furthermore, these procedures will very likely require modification before they can be practically applied to large quantities of real data. We have begun an investigation of Knox's method aimed at finding suitable ways to apply it to real data

    Some Commonly Used Speech Feature Extraction Algorithms

    Get PDF
    Speech is a complex naturally acquired human motor ability. It is characterized in adults with the production of about 14 different sounds per second via the harmonized actions of roughly 100 muscles. Speaker recognition is the capability of a software or hardware to receive speech signal, identify the speaker present in the speech signal and recognize the speaker afterwards. Feature extraction is accomplished by changing the speech waveform to a form of parametric representation at a relatively minimized data rate for subsequent processing and analysis. Therefore, acceptable classification is derived from excellent and quality features. Mel Frequency Cepstral Coefficients (MFCC), Linear Prediction Coefficients (LPC), Linear Prediction Cepstral Coefficients (LPCC), Line Spectral Frequencies (LSF), Discrete Wavelet Transform (DWT) and Perceptual Linear Prediction (PLP) are the speech feature extraction techniques that were discussed in these chapter. These methods have been tested in a wide variety of applications, giving them high level of reliability and acceptability. Researchers have made several modifications to the above discussed techniques to make them less susceptible to noise, more robust and consume less time. In conclusion, none of the methods is superior to the other, the area of application would determine which method to select

    Delayed Dynamical Systems: Networks, Chimeras and Reservoir Computing

    Full text link
    We present a systematic approach to reveal the correspondence between time delay dynamics and networks of coupled oscillators. After early demonstrations of the usefulness of spatio-temporal representations of time-delay system dynamics, extensive research on optoelectronic feedback loops has revealed their immense potential for realizing complex system dynamics such as chimeras in rings of coupled oscillators and applications to reservoir computing. Delayed dynamical systems have been enriched in recent years through the application of digital signal processing techniques. Very recently, we have showed that one can significantly extend the capabilities and implement networks with arbitrary topologies through the use of field programmable gate arrays (FPGAs). This architecture allows the design of appropriate filters and multiple time delays which greatly extend the possibilities for exploring synchronization patterns in arbitrary topological networks. This has enabled us to explore complex dynamics on networks with nodes that can be perfectly identical, introduce parameter heterogeneities and multiple time delays, as well as change network topologies to control the formation and evolution of patterns of synchrony

    Novel Pitch Detection Algorithm With Application to Speech Coding

    Get PDF
    This thesis introduces a novel method for accurate pitch detection and speech segmentation, named Multi-feature, Autocorrelation (ACR) and Wavelet Technique (MAWT). MAWT uses feature extraction, and ACR applied on Linear Predictive Coding (LPC) residuals, with a wavelet-based refinement step. MAWT opens the way for a unique approach to modeling: although speech is divided into segments, the success of voicing decisions is not crucial. Experiments demonstrate the superiority of MAWT in pitch period detection accuracy over existing methods, and illustrate its advantages for speech segmentation. These advantages are more pronounced for gain-varying and transitional speech, and under noisy conditions

    Autoregressive Modelling of Hilbert Envelopes for Wide-band Audio Coding

    Get PDF
    Frequency Domain Linear Prediction (FDLP) represents the technique for approximating temporal envelopes of a signal using autoregressive models. In this paper, we propose a wide-band audio coding system exploiting FDLP. Specifically, FDLP is applied on critically sampled sub-bands to model the Hilbert envelopes. The residual of the linear prediction forms the Hilbert carrier, which is transmitted along with the envelope parameters. This process is reversed at the decoder to reconstruct the signal. In the objective and subjective quality evaluations, the FDLP based audio codec at 6666 kbps provides competitive results compared to the state-of-art codecs at similar bit-rates

    Speech coding at medium bit rates using analysis by synthesis techniques

    Get PDF
    Speech coding at medium bit rates using analysis by synthesis technique
    • …
    corecore