1,322 research outputs found

    Ramsey numbers R(K3,G) for graphs of order 10

    Get PDF
    In this article we give the generalized triangle Ramsey numbers R(K3,G) of 12 005 158 of the 12 005 168 graphs of order 10. There are 10 graphs remaining for which we could not determine the Ramsey number. Most likely these graphs need approaches focusing on each individual graph in order to determine their triangle Ramsey number. The results were obtained by combining new computational and theoretical results. We also describe an optimized algorithm for the generation of all maximal triangle-free graphs and triangle Ramsey graphs. All Ramsey numbers up to 30 were computed by our implementation of this algorithm. We also prove some theoretical results that are applied to determine several triangle Ramsey numbers larger than 30. As not only the number of graphs is increasing very fast, but also the difficulty to determine Ramsey numbers, we consider it very likely that the table of all triangle Ramsey numbers for graphs of order 10 is the last complete table that can possibly be determined for a very long time.Comment: 24 pages, submitted for publication; added some comment

    On the minimum degree of minimal Ramsey graphs for multiple colours

    Full text link
    A graph G is r-Ramsey for a graph H, denoted by G\rightarrow (H)_r, if every r-colouring of the edges of G contains a monochromatic copy of H. The graph G is called r-Ramsey-minimal for H if it is r-Ramsey for H but no proper subgraph of G possesses this property. Let s_r(H) denote the smallest minimum degree of G over all graphs G that are r-Ramsey-minimal for H. The study of the parameter s_2 was initiated by Burr, Erd\H{o}s, and Lov\'{a}sz in 1976 when they showed that for the clique s_2(K_k)=(k-1)^2. In this paper, we study the dependency of s_r(K_k) on r and show that, under the condition that k is constant, s_r(K_k) = r^2 polylog r. We also give an upper bound on s_r(K_k) which is polynomial in both r and k, and we determine s_r(K_3) up to a factor of log r
    • …
    corecore